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Abstract—In this paper, we address the problem of fusing4
information about object positions in multirobot systems. Our5
approach is novel in two main respects. First, it addresses the6
multirobot object localization problem using fuzzy logic. It uses7
fuzzy sets to represent uncertain position information and fuzzy8
intersection to fuse this information. The result of this fusion is a9
consensus among sources, as opposed to the compromise achieved10
by many other approaches. Second, our method fully propagates11
self-localization uncertainty to object-position estimates. We eval-12
uate our method using systematic experiments, which describe13
an input-error landscape for the performance of our approach.14
This landscape characterizes how well our method performs when15
faced with various types and amounts of input errors.16

Index Terms—Fuzzy logic, information fusion, multirobot17
systems, object localization.18

I. INTRODUCTION19

ONE of the most important challenges in autonomous20

robotics is to accurately determine the state of the world.21

This knowledge is crucial to a robot’s ability to appropriately22

and reliably perform actions. In particular, it is important for23

a robot to know the positions of objects relevant to its current24

task. In this paper, we address the problem of determining this25

information in a multirobot system.26

The multirobot object localization problem can be seen as27

an instance of the more general information fusion problem.28

Combining information from different sources and/or different29

times, if done properly, yields more accurate estimates about30

the state of the world. In general, redundant information can31

improve accuracy and reliability, whereas complementary in-32

formation can resolve ambiguities and incompleteness.33

In single-robot object localization, information about object34

positions arrives at different times and/or from different sen-35

sors. In multirobot systems, more sensors are available, often36

with different points of view and different characteristics. This37

can virtually extend the overall system’s field of view, as well38

as reduce the effects of sensor range and accuracy limitations.39

The advantages of multirobot systems come at a cost.40

Unreliable communication channels and bandwidth limita-41

tions can make it difficult to share information. Furthermore,42
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shared information must be represented in a common reference 43

frame—normally, a global coordinate system. Object-position 44

estimates in this frame will strongly depend on a robot’s knowl- 45

edge about its own pose in the frame. 46

This paper, which extends the work in [1], makes three 47

main contributions. First, we propose a fuzzy-logic-based ap- 48

proach to representing and fusing object-position information 49

in multirobot systems. Our method uses fuzzy sets to represent 50

information, and we perform fusion using fuzzy intersection. 51

This yields a consensus about the fused information, as op- 52

posed to the compromise produced by many other approaches. 53

Fuzzy logic has successfully been used in many areas of 54

robotics [2], including information fusion (e.g., [3] and [4]) and 55

self-localization (e.g., [5] and [6]); however, the use of fuzzy 56

logic to address multirobot object localization is new. Sec- 57

ond, our method fully considers uncertainty in self-localization 58

when converting local position estimates to global coordinates. 59

As we discuss in Section II, most existing approaches as- 60

sume perfect self-localization, which is often not achievable 61

in robotic systems. Finally, we suggest a methodology for 62

systematically evaluating our approach, where we characterize 63

its performance with respect to various types of errors on its 64

inputs. This analysis departs from the traditional approach to 65

evaluating subsystems in robotics, where tests are performed 66

only under typical conditions, and the subsystem under test 67

is specifically tuned for those conditions. Our methodology 68

allows us to see how a subsystem performs outside of its 69

comfort zone; this can be useful when deciding what method 70

to use for a given application. In addition to these contribu- 71

tions, we also present some approximations of our method, 72

which reduce computational and bandwidth requirements if 73

needed. 74

Often, fusion is combined with data association and pre- 75

diction to perform tracking. In this paper, we focus only on 76

the fusion process itself. To allow the performance of our 77

fusion method to be measured in isolation, we assume that 78

the identity of detected objects is known (which trivializes 79

data association), and we assume that objects are static (hence, 80

prediction is not needed). 81

The rest of this paper is organized as follows. In Section II, 82

we discuss related work. Section III gives a brief overview of 83

fuzzy sets and discusses how we use them to represent and 84

fuse uncertain position information. In Section IV, we describe 85

our overall framework for multirobot object localization, and in 86

Section V, we discuss our implementation of the framework. 87

Finally, in Section VI, we present and discuss the results of our 88

experiments; we conclude with Section VII. 89

1083-4419/$25.00 © 2009 IEEE



2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

II. RELATED WORK90

Object localization is a fundamental challenge in robotics,91

and as such, many works address it. However, most methods92

rely on a relatively small number of underlying information93

fusion approaches. In this section, we give an overview of the94

fusion approaches that are most commonly used for object lo-95

calization tasks in robotics. We also briefly discuss two related96

problems—the self-localization problem and the multisensor97

multitarget tracking problem.98

Single-robot and multirobot approaches to object localization99

are often addressed using the same underlying fusion tech-100

niques. The main difference is that, in multirobot systems,101

sensors usually have unknown relative positions, which means102

that a common reference frame for position information is103

needed. This reference frame is normally a global coordinate104

system; such a reference frame is often used in other parts105

of the overall system as well. Estimating object positions in106

a global coordinate system normally requires that a robot107

should know its own pose in this frame, i.e., self-localization108

needs to be addressed. There are, however, a few approaches109

that avoid the need for global self-localization by using rela-110

tive reference frames, for instance, [7] and [8]. Once object-111

position estimates have been situated in the common reference112

frame—a step that is normally nontrivial given self-localization113

uncertainty—single-robot and multirobot object localization114

problems can be addressed using similar methods.115

Many works address the self-localization problem (e.g., [5],116

[6], [9], and [10]), and it is often combined with the mapping117

problem (a survey of this field is presented in [11]). The118

self-localization problem has some aspects in common with119

the multirobot object localization problem, and similar fusion120

methods are often used in both problems. However, a number of121

different challenges are involved when dealing with multirobot122

object localization. As such, we will only briefly touch upon the123

self-localization problem when we discuss the landmark-based124

fuzzy self-localization approach we use in this paper, which125

is based on [5]. A similar approach is described in [6]; this126

approach, which is also based on fuzzy logic, uses sonar scans127

instead of landmarks to determine possible robot poses.128

Fuzzy logic is a popular tool for addressing information129

fusion problems [1], [3], [4]. For instance, [4] presents a130

general approach to information fusion using fuzzy logic. This131

general fusion approach is then applied to the single-robot132

self-localization problem as an example. The work presented133

here has similar foundations, both in terms of information134

representation [2] and information fusion. This paper aims to135

apply well-studied fuzzy information fusion techniques to the136

multirobot object localization problem. As we will show, such137

an approach has a number of built-in advantages.138

Despite the popularity of fuzzy logic for addressing informa-139

tion fusion in general, many robotics applications rely on proba-140

bilistic fusion techniques. A large number of object localization141

methods are based on Kalman filters [12], [13] and linearized142

Kalman filters, like the extended Kalman filter [14], [15] and143

the unscented Kalman filter [16]. The Kalman filter algorithm144

can be seen as a continuous-space implementation of the Bayes145

filter algorithm [17], [18], in which information is represented146

using Gaussians. In general, such methods are accurate, easy to 147

implement, and computationally efficient. They are used both 148

to fuse information arriving at different times and to combine 149

information arriving from different sources (e.g., [19]–[23]). 150

Despite their widespread use, Kalman filters have a number of 151

limitations. For one thing, they are unimodal. This limitation 152

can be somewhat offset by multiple hypothesis tracking [24], 153

[25], which allows multiple modes to be maintained in paral- 154

lel. Another limitation of Kalman filter-based methods is that 155

since information is combined using weighted averaging, fused 156

results can significantly be degraded in the presence of false 157

positives or outliers. Various forms of gating (e.g., [26]–[28]) 158

can be used to reduce the effects of this limitation; however, 159

this requires careful tuning. 160

Markov localization (e.g., [10] and [29]) is another prob- 161

abilistic method often used in robotic localization tasks. The 162

algorithm can be viewed as a discrete-space implementation 163

of the Bayes filter algorithm [18]. The idea is to maintain 164

a (possibly multimodal) discrete probability distribution over 165

the state space—this is normally either grid-based or sample- 166

based. New information increases the probability that an ob- 167

ject is in a given region of the distribution and decreases 168

the probability that it is anywhere else. The resulting distri- 169

bution will typically have a higher probability in positions 170

that are consistent with the majority of the fused information. 171

Markov localization has been shown to be robust, although it 172

is computationally more demanding than Kalman filtering, in 173

general. There is typically a tradeoff between accuracy and 174

computational load; sample-based methods, in particular, allow 175

a smooth transition along the axis of this tradeoff. A hybrid 176

method that combines Kalman filters with Markov localization, 177

called Markov–Kalman object localization, has been shown to 178

be very effective [30], [31]. 179

The multisensor multitarget tracking problem is closely re- 180

lated to the multirobot object localization problem, except 181

for the fact that, in the former, sensors normally have fixed 182

positions. The vast majority of tracking approaches combine 183

observations using either Kalman filtering or sample-based 184

probabilistic filtering [22], [29], [32], [33]. Recent develop- 185

ments in this field mainly aim at improving performance with 186

respect to data association and prediction. Data association, 187

in particular, is known to be a computationally complex and 188

difficult problem, and many approaches focus on this; [34] 189

provides a survey of this field. Recall that, in this paper, we 190

do not address data association or prediction. 191

We have discussed the most common approaches to fusion in 192

multirobot object localization, all of which share one significant 193

limitation: self-localization uncertainty is not considered. Most 194

works explicitly assume perfect self-localization, which is not 195

normally achievable in robotic systems. In particular, even 196

small errors in orientation can cause large errors in object- 197

position estimates. 198

Aside from the work that we are extending [1], we know 199

of only one approach that explicitly addresses self-localization 200

uncertainty when performing multirobot object localization 201

[35]; in this sample-based approach, a small number of possible 202

object positions are computed taking self-localization uncer- 203

tainty into account, and these are exchanged between robots. 204
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Fig. 1. Various types of uncertainty represented using fuzzy sets. Figure from [2], used with permission.

In a few other approaches, self-localization uncertainty is used205

to weight estimates of target object positions (e.g., see the206

arithmetic mean method in [21]; a similar idea is described,207

but not implemented, in [19]). The work in [36] demonstrates208

that considering reliability of sources, in general, can improve209

performance in both self-localization and object-localization210

tasks.211

The method we propose uses fuzzy logic to compute a212

consensus between sources, and it does not suffer from the213

effects of averaging. Moreover, our method fully considers214

self-localization uncertainty when computing object-position215

estimates.216

III. FUZZY POSITION INFORMATION217

In this paper, we use fuzzy sets to represent and combine218

information about the positions of robots and objects. Fuzzy219

sets provide a powerful and convenient way to represent and220

fuse possibly uncertain position information. This section gives221

a brief overview of fuzzy sets, which should allow the reader to222

understand how they are used in this paper.223

A. Representing Fuzzy Position Information224

Fuzzy sets were proposed by Zadeh [37] as a way of rep-225

resenting noncrisp concepts (e.g., tall or old) by allowing set226

elements to have degrees of membership. These degrees of227

membership are represented by real numbers in the [0, 1]228

interval. Given an element x belonging to the universal set X ,229

one can denote the degree of membership of the element x to230

the set described by the concept A as µA(x). Mathematically,231

membership functions are defined as232

µA : X → [0, 1]. (1)

In this paper, we adhere to a possibilistic interpretation of233

fuzzy sets [38], [39], where µA(x) indicates the degree of234

possibility that x possesses the property A. Therefore, if A235

represents the position of an object, we read µA(x) as “the236

degree of possibility that object A is at position x.” Note that237

under this interpretation, low possibility values actually provide238

more information than high values, as they rule out potential239

elements. In particular, complete ignorance is represented by240

a fuzzy set in which all elements have membership values of241

1.0—in other words, all values are equally and fully possible.242

Conversely, the most informative distributions are those in 243

which all elements have membership values of 0.0 except for 244

one, which has a membership value of 1.0. 245

The use of fuzzy sets allows us to represent several different 246

types of uncertainty in position information. The ability to 247

represent information at precisely the level of detail at which 248

it is available is often claimed to be one of the most compelling 249

reasons to use fuzzy sets. Fig. 1 illustrates some of these 250

uncertainty types. In Fig. 1(a), the position of the object is 251

known with certainty to be 80. In Fig. 1(b), the position is 252

approximately 80, and it is, therefore, vague. In Fig. 1(c), the 253

position is between 80 and 160, and it is, therefore, imprecise. 254

In Fig. 1(d), the position is either 80 or 160, and it is, therefore, 255

ambiguous. In Fig. 1(e), the position is, with the highest pos- 256

sibility, at 80, but it is also possible that it is elsewhere (e.g., 257

perhaps it has recently been seen at 80, but it might have been 258

moved since then)—this unreliability is represented by setting 259

a minimum value for all elements in the fuzzy set to a certain 260

bias value. Finally, in Fig. 1(f), there are a number of different 261

types of uncertainty combined. 262

Sometimes, it is useful to extract a point estimate Â ∈ X 263

from the information contained in a fuzzy set µA. This process 264

is called defuzzification and can be done in a number of ways. 265

One of the most common defuzzification techniques is to use 266

the center of gravity (CoG) of the fuzzy set µA, which is 267

computed according to the following: 268

Â =

∫
x∈X xµA(x)dx∫
x∈X µA(x)dx

. (2)

B. Fusing Fuzzy Position Information 269

There are a number of operations that can be performed on 270

fuzzy sets; some of the most common are intersection, union, 271

and complementation. In this paper, we focus on intersection, 272

which can be used to fuse information represented in fuzzy sets. 273

Intersection of fuzzy sets is normally defined as 274

µA∩B(x) = µA(x) ⊗ µB(x) (3)

where ⊗ denotes a triangular norm or t-norm [40]. T-norms 275

are binary operators that are commutative, associative, and 276

nondecreasing (if x ≤ y, then x⊗ z ≤ y ⊗ z) and have 1 as 277

the neutral element (x⊗ 1 = x). The most commonly used 278
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Fig. 2. (a) Fuzzy fusion computes a consensus between two sources of information, as opposed to (b) averaging approaches, which compute a tradeoff.

t-norms are the minimum, the product, and the Łukasiewicz279

operator max(x+ y − 1, 0).280

The various t-norms behave differently; the choice is typi-281

cally domain dependent. For instance, the minimum t-norm is282

idempotent [min(x, x) = x]. Therefore, this operator is often283

used when the independence of sources cannot be assumed.284

This is because fusing the same information multiple times285

using an idempotent operator yields the same result as fusing286

it only once. Therefore, it does not matter if the sources are287

dependent—which means they could be providing different288

versions of the same information.289

In this paper, we typically use the product t-norm, which290

is nonidempotent. The product should be used when indepen-291

dence is granted since it acts as a reinforcing operator; specifi-292

cally, it reinforces belief in values that are deemed possible by293

all sources. See, for example, [4] for more details.294

As an example, imagine two sources that both report that295

µA(x) = 0.5 and µA(y) = 1.0. Recall that under the interpre-296

tation of fuzzy sets used here, µA(x) is the possibility that297

element x has property A. If the sources are dependent, then298

they are potentially merely repeating the same information. For299

instance, the information might reflect the beliefs of two people300

who have read about an event in the same newspaper. In this301

case, the information should be combined using the idempotent302

minimum t-norm, which will result in the combined belief303

being the same as the inputs µA(x) = 0.5 and µA(y) = 1.0.304

Since the sources are not independent, there is no reinforcement305

effect, although the sources agree.306

On the other hand, if the sources are independent, then they307

are not merely repeating the same information. For instance,308

the information might reflect the beliefs of two people who309

have both witnessed an event. In this case, we can apply a310

reinforcing t-norm, like the product, which will result in a311

combined belief of µA(x) = 0.25 and µA(y) = 1.0. This belief312

is stronger than any of the individual ones because it narrows313

the set of possibilities more sharply. In this sense, the two314

opinions have been reinforced.315

There are two important general facts about fuzzy fusion that316

should be noticed. First, only values that are regarded as possi-317

ble by all sources are retained in the result. This can be seen in318

the simple example shown in Fig. 2(a). In the figure, the result319

of the fusion of fuzzy sets µ1 and µ2 using the minimum t-norm320

is indicated by the shadowed area. Intuitively, the result of fuzzy321

fusion represents a consensus between sources of information.322

This contrasts with techniques that use averaging, which yield a323

tradeoff. Fig. 2(b) shows how two items of information similar324

to the ones shown in Fig. 2(a) might be represented and fused in325

an averaging approach. Notice that with fuzzy fusion, the peak326

Fig. 3. Discounting unreliable information in fuzzy fusion. Information µ1

is unreliable, as indicated by the high bias, and, therefore, only has a small
influence on the result of the fusion.

of the resulting distribution coincides with the peak of µ2 since 327

this is compatible with the peak of µ1; it lies in between those 328

peaks when using averaging. 329

The second fact to note is that fuzzy fusion automatically dis- 330

counts unreliable information. Consider Fig. 3. The information 331

represented by µ1 includes a high bias (0.8), indicating that this 332

information is unreliable; the information represented by µ2 333

has a small bias (0.1). Correspondingly, the result of the fusion 334

(here using the product t-norm) is similar to the information in 335

µ2, and it is only marginally influenced by µ1. Fuzzy fusion 336

minimizes the impact of unreliable information, provided this 337

unreliability is correctly represented. 338

IV. OBJECT LOCALIZATION FRAMEWORK 339

A. Problem Formulation 340

Our framework assumes that we have a set of M robots, 341

denoted {r1, . . . , rM}, with M > 1, which are able to com- 342

municate in some way. We also assume that a global reference 343

frame for position information is available and known to all 344

robots. A robot’s knowledge about its own position in this 345

reference frame may be uncertain. This reference frame could 346

be dynamic; however, in this paper, we use a fixed global coor- 347

dinate system. Positions in the global frame are denoted (x, y), 348

and poses, which include orientation, are denoted (x, y, φ). 349

Each robot ri maintains a belief distribution about its own 350

pose in the world. We make no assumptions about how this 351

distribution is created or maintained; we simply require that, 352

at all times, each robot can determine, for any pose (x, y, φ), 353

how much it believes this to be its true pose. In practice, we 354

represent self-localization information as we represent other 355

types of position information: using a fuzzy set, which indicates 356

the possibility of a given pose being a robot’s true pose. 357

In Section V-B, we will briefly describe the landmark-based 358

approach to self-localization used in this paper. 359

We assume that robots can observe named objects in the 360

environment, and that the identity of an observed object is 361
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Fig. 4. Overall schema of our multirobot object localization method.

known. An observation includes an estimate of the object’s362

position relative to the robot, as well as some associated un-363

certainty (e.g., a sensor model). In this paper, we use range364

and bearing measurements to represent observations, denoted365

(ρ, θ), and we use separate sensor models for the range and366

bearing components. We do not consider the orientation of367

observed objects, although an extension of our framework to368

include this would be straightforward.369

B. Overall Schema370

The overall schema of our method for multirobot object371

localization is graphically represented in Fig. 4 for a case with372

two robots sharing information about one object. In general,373

there are five main items of position information that we need to374

represent in each robot i. Note that each of these is time varying;375

we omit the time indexes for simplicity.376

Si A 3-D fuzzy set representing robot i’s self-localization377

estimate, in global coordinates. For any pose (x, y, φ),378

Si(x, y, φ) measures robot i’s belief that it is at379

that pose.380

Li
j A 2-D fuzzy set representing robot i’s local object-381

position estimate for object j, in polar coordinates. For382

any (ρ, θ), Li
j(ρ, θ) measures the possibility that ob-383

ject j is at distance ρ and bearing θ with respect to384

robot i. Note that single-point, range-only, and bearing-385

only estimates can all be represented in this fuzzy set.386

A single-point estimate (ρ̂, θ̂) is represented by setting387

Li
j(ρ̂, θ̂) = 1 and Li

j(ρ, θ) = 0 elsewhere. A bearing-only388

measurement of θ̂ is obtained by setting Li
j(ρ, θ) = 1389

if θ = θ̂, and 0 otherwise. A range-only measurement390

of ρ̂ is obtained by setting Li
j(ρ, θ) = 1 if ρ = ρ̂, and391

0 otherwise.392

Gi
j A 2-D fuzzy set representing robot i’s global object-393

position estimate for object j, in global coordinates. For394

any position (x, y),Gi
j(x, y) measures the possibility that395

object j is at position (x, y).396

F i
j A 2-D fuzzy set representing the fused object-position397

estimate maintained by robot i for object j, in global398

coordinates. For any position (x, y), F i
j (x, y) measures399

the possibility that object j is at position (x, y), according400

to the fusion of robot i’s own global estimate with those401

available from other robots.402

Ci
j A single (x, y) position representing the crisp object-403

position estimate maintained by robot i for object j, in404

global coordinates. This is extracted from F i
j .405

Our method consists of the following three main processing 406

steps, which operate on the described items of information. 407

These steps are individually carried out inside each robot. Note 408

that the descriptions below do not specify when each step 409

should be performed—this will be discussed in Section IV-E. 410

1) Coordinate Transformation: An observation of a target 411

object j is represented in a local estimate Li
j , which reflects 412

the measured range and bearing, as well as the sensor models 413

for each of these. This estimate Li
j is transformed into a global 414

estimate Gi
j via a fuzzy coordinate transformation, described 415

in Section IV-C. This transformation considers the full self- 416

localization distribution Si when computingGi
j ; that is, all self- 417

localization uncertainty is propagated to Gi
j . This is one of the 418

main distinctive features of our method. 419

2) Multirobot Fusion: In this step, robot i combines its 420

global estimate Gi
j with those of other robots. The fusion of 421

fuzzy sets was briefly described previously. The details of the 422

fusion step are discussed in Section IV-D. The result of the 423

fusion is stored in F i
j . 424

3) Position Extraction: When a point estimate of the posi- 425

tion of object j is needed by robot i, e.g., for action planning or 426

execution, it is extracted from the latest fused object estimate 427

F i
j . This estimate Ci

j is computed by taking the CoG of F i
j 428

according to (2). 429

Fig. 5 shows a graphical example of how the fuzzy sets 430

previously described might look after a few observations. The 431

fuzzy set in the top left corner for each robot is the self- 432

localization estimate Si; the middle fuzzy set is the global 433

estimate Gi
j ; the rightmost fuzzy set is the fused estimate F i

j . 434

The observation is shown in the bottom left corner. Note that 435

robot 1’s global estimate is not simply a translation of its self- 436

localization estimate; this is due to the uncertainty in both the 437

observation and the robot orientation. Also, note that robot 2 438

has much less uncertainty in self-localization; correspondingly, 439

the fused estimate, which is identical for both robots, is very 440

similar to robot 2’s global estimate. 441

Next, we will describe in detail the coordinate transformation 442

and multirobot fusion steps, which constitute the core steps of 443

our approach. After that, we will describe how the steps are put 444

together to form the overall framework. 445

C. Coordinate Transformation 446

The coordinate transformation step converts a local object- 447

position estimate Li
j into a global object-position estimate Gi

j , 448

taking the self-localization estimate Si into consideration. Note 449
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Fig. 5. Snapshot of our framework after a few observations, in a scenario
with two robots. Lighter areas indicate possible positions; darker areas are less
possible. We do not show the uncertainty in the range and bearing of the local
estimates (bottom left for each robot). The resulting fused grids are identical
since they result from the fusion of the same two global estimates.

thatGi
j is created based only on the information currently in Li

j450

and Si, and not from any previous information.451

The transformation is not straightforward since neither the452

self-localization estimate nor the object observations are rep-453

resented as points. Instead, the self-localization estimate is454

represented by the distribution in Si, and the observation is455

represented by Li
j , which includes uncertainty in range and456

bearing. It should be noted that one can address situations in457

which there is no uncertainty in Si and/or Li
j by using point458

estimates for these. This amounts to assuming perfect self-459

localization and/or a perfect sensor, respectively; our method460

transparently treats both cases.461

We compute Gi
j as follows. Assume that robot i sees object462

j at range ρ and bearing θ. This is encoded in the local463

observation Li
j , which takes uncertainty into account. Let p =464

(x, y, φ) denote an arbitrary 3-D pose for robot i—recall that465

φ represents the robot’s orientation. Let q = (x′, y′) denote an466

arbitrary 2-D position. Then, the possibility of object j being at467

position q according to robot i is given by468

Gi
j(q) = sup

p

{
Si(p) ⊗ Li

j (‖pq‖,∠(pq) − φ)
}

(4)

where ‖pq‖ denotes the length of the segment linking p to469

q, and ∠(pq) denotes its orientation in the global frame. The470

overall distribution Gi
j is computed by calculating Gi

j(q) for471

each possible position q in the global coordinate system; recall472

that we assume that this global coordinate system exists and is473

known to all robots. Therefore, the frame of discernment for474

the distribution Gi
j is the set of all possible positions. Each475

position gets a value in [0, 1], which reflects the possibility476

that the object is at that position. In Section V, we will477

discuss how we implement the set of possible positions as a478

2-D grid.479

Formula (4) can be explained as follows. The output of the 480

formula is a measure of how possible it is that object j is 481

at the 2-D input position q, given 1) the 3-D pose of robot 482

i, represented by Si, in global coordinates and 2) the 2-D 483

range and bearing observation of object j made by robot i, 484

represented by Li
j , in local coordinates. The value Si(p) is the 485

possibility that robot i is at pose p. The value of ∠(pq) − φ 486

is the observed bearing to the target with respect to φ, which 487

is robot i’s orientation in the global coordinate system. The 488

value of Li
j (‖pq‖,∠(pq) − φ) reflects the possibility that robot 489

i could observe object j at position q from pose p given the 490

observation and associated uncertainty encoded in Li
j . 491

The values Si(p) and Li
j (‖pq‖,∠(pq) − φ) are combined 492

using a t-norm, as indicated by the symbol ⊗; in this paper, 493

we use the product. We take the supremum of this combination 494

for all possible poses p, as indicated by the supp operator. This 495

means that the overall possibility of object j being at position 496

q is based on the pose p, which yields the highest possibility of 497

this being true. The graphical example in Fig. 5 shows, for two 498

robots, their self-localization estimates Si, observationsLi
j , and 499

the resulting global estimates Gi
j . 500

The coordinate transformation can yield a distribution Gi
j 501

in which no positions are fully possible. This can arise due 502

to inconsistent information in the Si and Li
j distributions. For 503

example, an object could be observed in a position that is 504

outside the world. In such cases, we normalize the Gi
j distri- 505

bution by shifting the values of all positions up until the most 506

possible positions are fully possible. This is intuitive since there 507

should always be some fully possible position. The fact that 508

the normalized estimate incorporates inconsistent information 509

is indicated by the fact that the minimum value of the fuzzy 510

set, called the bias, is increased—which means that, to some 511

degree, any position is possible. 512

It should be emphasized that transformation (4) preserves the 513

full self-localization uncertainty from Si and propagates it to 514

Gi
j . In this respect, our approach is different from most existing 515

approaches, where object positions are computed by assuming 516

a point estimate for the location of the robot. Such approaches 517

do not correctly propagate uncertainty in the robot’s pose since 518

they do not take into account the nonlinearities in the coordinate 519

transformation—recall the example in Fig. 5. Moreover, they 520

do not properly handle ambiguity (i.e., multiple modes) in 521

the robot’s self-localization. Our transformation (4) addresses 522

both of these issues. The implementation of the coordinate 523

transformation will be explained in detail in Section V. 524

D. Multirobot Fusion 525

Robots exchange their global estimates Gi
j , which are all 526

based on the same global coordinate system. The estimates of 527

M robots are fused together according to 528

F i
j (x, y) =

M⊗

i=0

Gi
j(x, y) (5)

where ⊗ denotes the chosen t-norm operator. As mentioned in 529

Section III, the choice of t-norm is often domain dependent. 530
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For the fusion of position information, we use the product since531

it is a nonidempotent operator that reinforces belief in positions532

that are consistent with estimates from all robots. Recall Fig. 5533

once again; note that the fused estimates contain only positions534

that are consistent with estimates from both robots. Also, recall535

that a distribution with a high bias value will have little effect536

on the result.537

The result of the fusion process is separately stored from538

Gi
j , in F i

j , to avoid circular dependencies. Since we are using539

a nonidempotent t-norm, it is important that the information540

in each estimate Gi
j only be considered once. Note that this541

operation is done on the full distributions—many other ap-542

proaches summarize estimates before sending and fusing them,543

which can result in significant data loss. Moreover, observe that544

we are not considering the previous information in F i
j when545

updating it; we simply compute, at every update step, the fusion546

of all individual estimates. We make no assumptions about the547

reliability of the sources other than to consider the uncertainty548

represented in the estimates they produce.549

The fusion step can result in a distribution F i
j in which no550

positions are fully possible. This can arise due to inconsis-551

tent information in the Gi
j distributions caused by errors in552

the individual robots’ perception or self-localization. In these553

cases, we normalize the entire F i
j distribution in the same way554

as we normalized global object-position estimates Gi
j , which555

contained inconsistent information. Again, this normalization556

increases the bias value of the overall estimate, indicating that,557

to some degree, any position is possible.558

We do not test for agreement between new information and559

the previous F i
j estimate since the previous estimate may have560

been incorrect. Nor do we test for agreement between robots561

since we do not know which robot, if any, is correct. Some562

approaches assume that the majority of sources are correct, but563

this does not always hold. Moreover, a majority cannot always564

be determined, e.g., when there are only two robots or when565

two equally large groups disagree.566

If a robot is continuously sending incorrect information567

without representing this (i.e., without knowing it), the fusion568

process will continuously indicate that the result of the fusion569

is unreliable. Our method aims to yield a consensus between570

sources—if no such consensus exists, this information is also571

returned. We believe that it is crucial to clearly represent, rather572

than to hide, the fact that incoming information is inconsistent.573

This information can extremely be useful to the overall system;574

a high-level module might want to perform actions to verify575

unreliable estimates. The implementation of the fusion process576

will be explained in detail in Section V.577

E. Putting It Together578

So far, we have described the steps that we use to perform579

multirobot object localization. However, as in many distributed580

systems, it can be difficult to determine the proper order and581

timing for these steps. In our approach, we rely on an asynchro-582

nous event-based model, and we perform actions in response to583

various triggers. This makes the overall algorithm intrinsically584

decentralized and allows any successfully exchanged informa-585

tion to be exploited. If all robots successfully exchange all Gi
j586

fuzzy sets, all robots will have the same values for each F i
j 587

estimate since they are all fusing the same information. A robot 588

does not differently treat its own object-position estimate Gi
j 589

than the ones received from other robots. The following are 590

the main trigger–action pairs, as seen from the perspective of 591

a given robot i and target object j. 592

• Target observed. Whenever object j is observed by robot 593

i, the local position estimate Li
j is built based on the 594

observation and the associated sensor models. The global 595

estimate Gi
j is then built from Li

j and the current self- 596

location estimate Si via coordinate transformation (4). 597

• Estimates sent. The global position estimate Gi
j is nor- 598

mally broadcast to all other robots whenever it is modified 599

in response to an observation; however, the approach 600

allows the frequency to be limited and/or the information 601

to be compressed if bandwidth limitations are a concern. 602

• Estimates received. When a global position estimateGh
j is 603

received from another robot h, it is stored in a local cache 604

for the pair (h, j), overwriting the last estimate sent by that 605

robot for that object. 606

• Target requested. Whenever a global position estimate 607

is requested, the latest values of Gh
j for all robots h = 608

1, . . . ,M , including robot i itself, are combined according 609

to (5), resulting in the fused estimate F i
j . If a point position 610

is requested, the CoG of F i
j is computed per (2). 611

This list outlines the main events considered in our frame- 612

work and the actions they trigger. There are a number of alterna- 613

tive ways in which the steps of our method could be put together 614

to suit the requirements of a given domain. Depending on 615

which resources are most limited (e.g., memory, computation, 616

or bandwidth), various changes could be made. However, such 617

issues do not affect the fusion process itself, which is the focus 618

of this paper. 619

V. IMPLEMENTATION 620

A. Representing Fuzzy Sets 621

As mentioned previously, in our approach, we represent 622

uncertain position information using fuzzy sets under a pos- 623

sibilistic interpretation. Two of the most common ways to 624

implement fuzzy sets are the bin model and the parametric 625

model. In the bin model, the universe of discourse is discretized 626

as an array of “bins,” usually (but not necessarily) using a fixed 627

step size; each bin stores a number that represents the corre- 628

sponding membership value. In the parametric model, a fuzzy 629

set is represented by fixing the parameters of a corresponding 630

parametric function. Parametric representations tend to allow 631

more efficient storage and computation; however, they have 632

limited representational power. In the implementation discussed 633

here, we use both bin and parametric models. 634

The parametric models we use in our implementation are 635

trapezoidal membership functions, described by the following 636

parameters, graphically shown in Fig. 6. 637

• Core center and core width. The core is the set of values 638

that all have the maximum degree of membership. A wider 639

core means a less precise fuzzy set. 640
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Fig. 6. Trapezoidal membership function.

• Support center and support width. The support is the set641

of values at the bottom of the trapezoid, and it contains642

the core. The larger the difference between the core width643

and the support width, the vaguer the fuzzy set. In this pa-644

per, symmetric trapezoids are used; therefore, the support645

center is the same as the core center.646

• Height. The maximum value of the membership function.647

• Bias. The minimum value of the membership function.648

Trapezoidal fuzzy sets are often used in fuzzy logic, although,649

normally, the height is 1, and the bias is 0. In our possibilistic650

interpretation, a fuzzy set with height<1 indicates that no value651

is fully possible given the available information; a fuzzy set652

with bias >0 indicates that the information is not fully reliable,653

i.e., values outside the support of the fuzzy set are still possible.654

Notice that this representation can account for all of the types655

of uncertainty illustrated in Fig. 1, except for cases (d) and (f),656

which require multiple modes.657

One thing we use parametric trapezoidal membership func-658

tions for is to encode sensor models. An observation sensor659

model is encoded by two trapezoidal fuzzy sets: µρ and µθ,660

where ρ and θ are the measured range and bearing to the661

observed object. For µρ, the height is set to 1, and both the core662

center and the support center are set to ρ. If the range accuracy663

of the relevant sensor inversely depends on distance, the core664

width and the support width of µρ are set proportionally to the665

measured range ρ. Otherwise, they are given fixed values. For666

µθ, the height is set to 1, and both the core center and the667

support center are set to θ. The core width and the support668

width are fixed since the accuracy of a bearing measurement669

will typically not depend on its value. Both µρ and µθ have a670

small bias, which accounts for the possibility of false detection.671

If necessary, this bias can be increased to indicate that a672

measurement is unreliable. Experiments have shown that our673

method is not particularly sensitive to the tuning of these sensor674

models; in general, intuitively chosen initial values perform675

well and need not be modified.676

We use a bin model to represent position information in the677

global coordinate system. The 2-D position information con-678

tained in Gi
j and F i

j is represented using discrete possibilistic679

grids, which represent a square tessellation of the 2-D space.680

Each cell in the grid has a value in the range [0, 1], which681

reflects the possibility that the object is located in that cell.682

To represent the robot’s pose Si, we also need to represent683

orientation. Using a 3-D grid would be quite expensive in terms 684

of computation and storage. Instead, we use a 2(1/2)-D grid, 685

where each cell c contains, instead of just a membership value, 686

a trapezoidal membership function µi
c (see [5]). This function 687

provides a parametric unimodal estimate of the orientation, 688

which the robot could have if it were in cell c. Therefore, for 689

any pose (x, y, φ), the possibility that the robot has that pose is 690

obtained by computing the value of µi
c(φ), where c indicates 691

the cell corresponding to position (x, y). The height of the 692

trapezoid in each cell corresponds to the overall possibility of 693

the robot being in that cell, disregarding its orientation. 694

B. Self-Localization 695

In this section, we briefly describe the self-localization 696

method we use in this paper. Recall that our approach to multi- 697

robot object localization does not rely on this specific method; 698

in principle, any self-localization method could be used. 699

Our self-localization process relies on the fuzzy grid-based 700

approach proposed by Buschka et al. [5]. The approach as- 701

sumes that a map of the environment is provided, which in- 702

cludes the positions of recognizable features (landmarks) in the 703

environment. The process uses a 2(1/2)-D grid as previously 704

described to represent self-localization information. 705

The self-localization process runs an infinite predict–update 706

loop. Prediction takes into account robot motion, which, in our 707

case, is estimated using odometry. The prediction consists of 708

translation, rotation, and dilation of the Si grid. The transla- 709

tion and the rotation are applied together, and the dilation is 710

applied afterward to model the uncertainty in the odometric 711

information. The transformations are implemented as fuzzy 712

morphological operations [41]. In the update step, possible 713

positions are computed based on observed landmarks, and 714

these are intersected with the current estimate Si. Landmark 715

observations are encoded as normal object observations using 716

the trapezoidal fuzzy sets for range and bearing, as described 717

previously. Normalization is performed if Si contains inconsis- 718

tent information (i.e., no fully possible poses). 719

This fuzzy self-localization method has been shown to pro- 720

duce robust results in a highly dynamic domain characterized 721

by significant sensor noise and unpredictable model errors. The 722

method has also proven to be quite insensitive to sensor model 723

tuning [5]. The approach has also been applied to domains with 724

nonunique landmarks [9]. 725

C. Full Object Localization Method 726

Here, we describe the main implementation of our method 727

using the representations of fuzzy sets described previously. In 728

Sections V-D and V-E, we will describe some approximations 729

of our method, which can be used to reduce computational and 730

bandwidth requirements, respectively, if needed. 731

1) Coordinate Transformation: When a target object j is 732

observed at range ρ and bearing θ, the first step is to build the 733

corresponding fuzzy set Li
j . This simply involves setting the 734

parameters of the two trapezoidal fuzzy sets—µρ and µθ—as 735

described previously, to represent the sensor model. Once Li
j 736

has been created, the fuzzy coordinate transformation defined 737
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by (4) is performed to build the global object-position grid Gi
j .738

Algorithm 1 encodes this computation.739

Algorithm 1. Fuzzy coordinate transformation.740

Require: Si = one trapezoid µi
c for each cell c.741

Require: Li
j = two trapezoids, µρ and µθ.742

Ensure: Gi
j743

1. Gi
j ← 0744

2. for all cell c such that height(µi
c) > ε do745

3. µtmp ← µi
c746

core(µtmp) ← max{core(µi
c), core(µθ)}747

support(µtmp) ← max{support(µi
c), support(µθ)}748

4. for all cell q such that µρ(‖cq‖) > bias(µρ) do749

5. Gi
j(q)←max{Gi

j(q), µtmp(∠(cq)−θ)·µρ(‖cq‖)}750

6. end for751

7. end for752

8. normalize Gi
j .753

Step 1 sets the global estimate Gi
j to zero. In step 2, ε754

is a fixed threshold below which we ignore cells in Si; this755

threshold is typically low (e.g., 0.1). This check allows us to756

skip iterations of the main loop, which we know will produce757

low possibility values. In step 3, we account for uncertainty758

in the bearing reading by setting a temporary trapezoid equal759

to µi
c (from Si) and widening its core and support values to760

be at least as wide as the uncertainty in the bearing sensor761

model. This trapezoid is used to determine if the observation762

could have been made from cell c given its bearing. In step 4,763

we limit the cells we update to those that are at a distance,764

which is consistent with the range reading. These cells are on765

an annulus with radius r = ‖cq‖ and width w = support(µρ).766

This check can efficiently be implemented using Bresenham’s767

circle drawing algorithm [42]. We iteratively run the algorithm768

for radii between r − (w/2) and r + (w/2). Step 8 normalizes769

Gi
j if there are no fully possible values.770

The computational complexity of the full coordinate trans-771

formation for one object is O(ND), where N is the number772

of cells in Si, and D is the number of cells in Gi
j , which are773

possible according to the range sensor model (step 4). Since we774

use grids of the same size for Si and for eachGi
j , the worst case775

computational complexity is O(N2).776

2) Multirobot Fusion: When robot i requires a global posi-777

tion estimate for object j, the cached grids Gh
j of all robots,778

including robot i itself, are combined according to (5). Combi-779

nation is performed cell by cell in a single scan, and the result is780

stored in F i
j . In our implementation, we use the product t-norm781

to reinforce belief in positions that all robots consider possible.782

Recall that if there are no fully possible positions in F i
j , the grid783

is normalized.784

The computational complexity of this step for one object785

is O(NM), where N is the number of cells in a grid, and786

M is the number of robots. The memory needed for storing787

the grids from all robots is O(NM) cells. Note that the com-788

putation is individually carried out in each robot. Since the789

computational and memory costs are both linear in the number790

of robots and in the number of objects, the fusion step scales791

quite well.792

Fig. 7. Distribution on the left is computed using the full coordinate trans-
formation; the one on the right is computed using the approximate coordinate
transformation.

3) Position Extraction: A point estimate Ci
j can be com- 793

puted from F i
j using the CoG per (2). We consider only parts 794

of the grid above a dynamic threshold, which is computed as a 795

function of the bias of the distribution: the higher the bias, the 796

higher the threshold. 797

D. Approximate Coordinate Transformation 798

Here, we describe an approximation of the coordinate trans- 799

formation step, which allows global position estimatesGi
j to be 800

derived using less computation than the full method. 801

The cost of algorithm 1 critically depends on the width w = 802

support(µρ) of the trapezoid representing range uncertainty. 803

One way to reduce the complexity of the algorithm is to 804

ignore range uncertainty in the algorithm itself and introduce 805

an approximation of it a posteriori by performing a blurring 806

operation on the resulting Gi
j grid. The approximation still 807

considers the full uncertainty in the self-localization grid, as 808

well as uncertainty in the bearing of the observation; it ap- 809

proximates only the range uncertainty in the observation. As 810

the observation range uncertainty is increased, the accuracy of 811

the approximation decreases. However, we have experimentally 812

verified that, in the domain considered in this paper, using the 813

approximation has a negligible effect on the results achieved by 814

our method. 815

As an example, see Fig. 7, where two Gi
j grids produced 816

using the same data are shown; the grid on the left was created 817

using the full algorithm, and the one on the right was created 818

using the approximate algorithm. Note that the uncertainty in 819

the approximated grid is slightly less prominent in the horizon- 820

tal direction; this reflects the fact that the approximation does 821

not consider the full range uncertainty. 822

The approximated coordinate transformation can be imple- 823

mented using algorithm 2. The approximate algorithm differs 824

from algorithm 1 in two ways. First, in step 4, we only consider 825

cells where ‖cq‖ = ρ; these cells lie on a circle of radius 826

ρ. We can quickly find these cells using a single iteration 827

of Bresenham’s circle drawing algorithm [42] as opposed to 828

the multiple iterations used in the full algorithm. Second, in 829

step 8, we apply a fuzzy morphological dilation operation to 830

blur the Gi
j grid by an amount proportional to core(µρ). This 831

operation is meant to approximate the range uncertainty in the 832

observation, which was ignored in step 4. 833
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Algorithm 2. Approximate fuzzy coordinate transformation.834

Require: Si = one trapezoid µi
c for each cell c.835

Require: Li
j = two trapezoids, µρ and µθ.836

Ensure: Gi
j837

1. Gi
j ← 0838

2. for all cell c such that height(µi
c) > ε do839

3. µtmp ← µi
c840

core(µtmp) ← max{core(µi
c), core(µθ)}841

support(µtmp) ← max{support(µi
c), support(µθ)}842

4. for all cell q such that ‖cq‖ = ρ do843

5. Gi
j(q)←max{Gi

j(q), µtmp(∠(cq)−θ)·µρ(‖cq‖)}844

6. end for845

7. end for846

8. dilate Gi
j by an amount proportional to core(µρ)847

9. normalize Gi
j .848

The computational complexity of the approximate coordinate849

transformation is O(CN +KN), where N is the number of850

cells in Si, C is the number of cells on the circle around the851

robot, which has a radius equal to the observed bearing ρ, and852

K is the size of the structuring element used in the dilation.853

Since the number of cells C can grow at most as
√
N , and854

since K does not depend on N , the asymptotic complexity of855

algorithm 2 is O(N
√
N). In our experience, the approximate856

algorithm typically requires significantly less time to execute857

than the full algorithm, particularly for observations with much858

range uncertainty.859

E. Global Object Grid Approximations860

Here, we describe three approximations of the global po-861

sition grids Gi
j . These approximations reduce the amount of862

bandwidth needed to exchange these grids.863

Normally, all robots exchange their full Gi
j object grids. If864

these grids have N cells, then the (uncompressed) size of each865

message is BN bits, where B is the number of bits used to866

represent the possibility value in each cell of Gi
j . We typically867

use 1 B per cell. One simple way to reduce bandwidth is to868

represent possibility values at a coarser resolution; that is, one869

can use fewer bits per cell. Obviously, the fewer bits are used,870

the less accurate the approximation is. In the next section, we871

show results obtained using various resolutions.872

Another way to approximate the Gi
j object grids is to use873

a parametric representation of the distribution. We have ex-874

perimented with two such representations, both of which are875

unimodal. The first is a bounding box of the area of the grid,876

which contains all possibility values greater than a certain877

threshold (we typically use 0.8). The bias of the grid (the878

minimum value) can be sent along with the bounding box,879

thus tagging the bounding box with a measure of reliability.880

We normally use 8 bits to represent the bias value, and we881

mark the four corners of the bounding box using four 32-bit882

integers. Therefore, each grid can be sent using a fixed size of883

(8 + 4(32)) = 136 bits. Note that this does not depend on the884

size of the grid.885

The second parametric approximation we tested consists of886

two bounding boxes—one at a higher threshold (e.g., 0.8) and887

one at a lower threshold (e.g., 0.2). These boxes can be seen 888

as representing the core and support of a 2-D trapezoid, which 889

approximates the discrete distribution in Gi
j . The bias of the 890

distribution is sent in this case as well. The resulting message 891

size is (8 + 8(32)) = 264 bits. Again, note that this does not 892

depend on the size of the grid. Results using both parametric 893

representations will be shown in the next section. 894

VI. EXPERIMENTS 895

In this section, we report the results of experiments per- 896

formed using our method on a team of three robots sharing 897

information about the location of a static ball. These experi- 898

ments are performed with three goals in mind: 1) to empirically 899

demonstrate the validity of our approach to multirobot object 900

localization; 2) to determine the types of situations in which 901

our method performs best; and 3) to quantify the degradation 902

in performance introduced by using the approximations of the 903

global position grids, discussed previously. 904

A. Methodology 905

When we first tried to quantitatively evaluate our method, we 906

noticed that performance greatly varied from one experimental 907

setup to another. By experimental setup, we mean the platforms, 908

sensors, and experimental conditions used (e.g., lighting). This 909

prompted a more systematic analysis of our method, the results 910

of which are presented here. The analysis is intended to describe 911

an input-error landscape, which shows how the performance of 912

our method varies as different types and amounts of errors are 913

introduced on its inputs. The input variables that we consider 914

are the self-localization distribution and the range and bearing 915

values of target object observations. 916

The analysis is empirically done by independently introduc- 917

ing increasingly large amounts of artificial errors on each input 918

variable. To introduce errors on the target observations, we 919

corrupt the measured range and bearing values. To introduce 920

errors in self-localization, we corrupt the landmark observa- 921

tions used by the self-localization algorithm. We consider three 922

types of input errors—systematic errors, random noise, and 923

false positives. 924

The artificially corrupted data are based on real data, 925

recorded in real time using a number of experimental layouts. 926

The data are first idealized offline; in other words, range and 927

bearing measurements to both landmarks and target objects are 928

set to reflect the ground truth. Various types and amounts of 929

artificial input errors are then introduced. In these systematic 930

experiments, the robots and the target object are static; recall 931

that this is to allow us to examine the performance of the 932

fusion process in isolation without the influence of filtering or 933

prediction. 934

In addition to this systematic analysis, we also present the 935

results of one experiment that uses real data in a scenario 936

where one robot is moving. As we shall see, the results of 937

this experiment are consistent with the ones obtained using the 938

systematic analysis; they reflect the performance of our method 939

at one specific point on the input-error landscape. 940
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Fig. 8. AIBO robot.

Fig. 9. Experimental environment.

B. Experimental Setup941

1) Robots: The robots we used in our experiments are Sony942

AIBO ERS-210A [43] (see Fig. 8). These robots were used in943

earlier editions of the RoboCup competition [44]. Each robot944

has 32 MB of synchronous dynamic random access memory945

and a 64-bit RISC processor with a clock speed of 384 MHz.946

The robot’s main sensor is a 100 000-pixel complimentary947

metal–oxide–semiconductor camera, mounted on the head. The948

robots communicate via wireless Ethernet.949

Since the robots use legs instead of wheels, odometry is950

particularly unreliable mainly due to unpredictable slippage.951

The most serious errors in perception, for both landmark and952

target observations, occur because of the following reasons.953

1) Range estimation is based on the size of an object in954

the camera image; hence, accuracy crucially depends on955

lighting conditions. Furthermore, the precision of range956

estimates quickly decreases with distance.957

2) Bearing precision is limited due to uncertainty in the958

position of the camera; specifically, the pan joint position959

estimate often contains errors.960

3) False positives and false negatives are relatively frequent961

due to errors in color segmentation caused by the cam-962

era’s low resolution and high sensitivity to lighting.963

These errors do not affect the systematic analysis since, in964

this analysis, the sources of errors are artificial—we isolate965

various types of errors, rather than their sources. However,966

these sources of error should be kept in mind for the online967

experiment, which uses real data.968

2) Environment: The environment is an area of approxi-969

mately 3 × 5 m, with eight unique landmarks. The setup is970

based on one of the playing fields used in earlier editions of the971

RoboCup competition. All objects of interest are color coded;972

this allows the data-association problem to be solved relatively973

easily. A photo of the setup is shown in Fig. 9.974

Fig. 10. Experimental layouts used in our experiments.

For all grids, we use a spatial resolution of 100 mm; the 975

precision of our method is limited by this choice. We have 976

verified that using finer resolutions does not significantly affect 977

the results of our experiments. In real situations using the 978

experimental setup described here, errors in estimation due to 979

odometric and perceptual errors are generally much larger than 980

100 mm. This resolution choice, along with the size of the 981

environment, means that there are approximately 30 × 50 cells 982

in the position grids. Using a maximum resolution of 8 bits 983

per cell, a full position grid has a size of 1.5 kB; this could 984

be reduced using compression if needed. 985

In all the experiments, there are three robots and one static 986

ball, which is the only target object. During a given run, the 987

robots use the gaze control strategy described in [45] to keep 988

both the target and landmarks under observation. The three 989

experimental layouts we used in the presented experiments are 990

shown in Fig. 10. Other layouts were tested, but the results 991

did not significantly vary from one layout to another. We use 992

the first two layouts, in which the robots are static, for the 993

systematic analysis. The third layout is used in the experiment 994

with real data; in this case, there is one moving robot. The 995

approximate path taken by the robot is shown by the dotted line. 996

3) Ground Truth: The true positions of static robots and 997

objects are measured for each experimental layout. In layout 998

3, the moving robot’s pose is determined using a Polhemus 999

Fastrak 6D magnetic position tracker [46] mounted on the 1000

robot’s back. The error of this tracker in our setup is less than 1001

10 mm, which is sufficient for our purposes. The reference point 1002

for this tracker can be seen in Fig. 9. 1003

4) Performance Metrics: The performance metric we use 1004

for all our experiments is the distance (in millimeters) between 1005

the fused object-position estimate, which is based on informa- 1006

tion from all three robots, and the ground-truth position of the 1007

target object, which is known in advance for each layout. 1008

C. Software Setup 1009

The architecture we use on the robots is a modular lay- 1010

ered architecture, loosely based on the Thinking Cap software 1011

architecture [47]. Our multirobot object localization method 1012

was initially implemented within this architecture and run on- 1013

board the AIBO robots. For the experiments presented here, 1014

the software has been separated into two parts—an on-board 1015

part and an off-board part. The on-board and off-board modules 1016

communicate via wireless Ethernet. 1017
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The on-board software includes modules for perception and1018

motion control. The perception module performs object recog-1019

nition based on color segmentation [48], and for each observed1020

object, it returns its ID together with its measured range and1021

bearing (ρ, θ). The perceptual module also takes care of gaze1022

control, determining where and when to look for landmarks and1023

target objects [45]. The motion control module sends motion1024

commands to the low-level controller of the robot and returns1025

an estimate of the motion based on odometry. Recall that1026

odometric information is typically very poor on the legged1027

AIBO robots.1028

The off-board software consists of a customizable tool that1029

implements our multirobot object localization method and al-1030

lows data to be logged, processed, and analyzed in a number1031

of ways. We log motion updates, landmark observations, and1032

target object observations. These logs are used both in the1033

experiments using artificially corrupted data and those using1034

real data. For the systematic experiments, the tool is also1035

used to create ideal data. These data preserve event ordering1036

and timing; however, they contain modified range and bearing1037

measurements, computed from ground-truth information. The1038

tool also allows the various types of input errors previously1039

discussed to be applied to the data.1040

When processing the data in our experiments, we ensure that1041

all grids are computed as soon as new relevant information is1042

available. Therefore, whenever robot i observes a target j, an1043

updated global position grid Gi
j is built. Also, whenever any of1044

the robots updates its global position grid, this is shared with1045

the other robots, and an updated fused grid F i
j is computed1046

immediately. This basically means that we do not limit the fre-1047

quency at which global position grids are created or transmitted1048

to other robots, and we assume that global position estimates1049

are constantly being requested. In the off-board implementation1050

used for the analysis, this is easily achieved since the logged1051

data are processed from within the tool, which maintains the1052

estimates for all robots within the same process. In the on-board1053

implementation, this would require that enough bandwidth be1054

available to transmit the grids as often as target observations1055

are made. For the case with three robots observing one ball,1056

this would easily be achievable given the bandwidth available1057

from wireless Ethernet.1058

D. Evaluated Methods1059

We have computed and compared the results of fusing infor-1060

mation using eight different methods:1061

• 8BPC-exact: our fuzzy fusion method, using the exact1062

coordinate transformation algorithm 1 and 8 bits per cell1063

to represent possibility values in Gi
j ;1064

• 8BPC: same as previous, using the approximate coordinate1065

transformation algorithm described in Section V-D;1066

• 4BPC: same as previous, using 4 bits per cell;1067

• 2BPC: same as previous, using 2 bits per cell;1068

• 2BB: same as previous, using the two bounding box1069

approximation of Gi
j ;1070

• 1BB: same as previous, using the single bounding box1071

approximation of Gi
j ;1072

• IWAVG: an ideally weighted average, used as a reference 1073

method; 1074

• AVG: a nonweighted average, used as another reference 1075

method. 1076

As mentioned previously, the 8BPC-exact and 8BPC meth- 1077

ods produced very similar results; the 4BPC and 2BPC methods 1078

also performed similarly. To keep the graphs readable, and to 1079

avoid confusion between methods with similar performance, 1080

we will only report the results achieved using the following six 1081

methods: 8BPC, 2BPC, 2BB, 1BB, IWAVG, and AVG. 1082

IWAVG and AVG are reference methods with which we 1083

compare our approach. In evaluating a robotic system, the 1084

choice of reference methods is always a delicate issue. Rarely 1085

do reference methods reflect the latest and best alternative 1086

methods since the implementations of these are often difficult 1087

to achieve, nor are the reference methods implemented with as 1088

much care and expertise as the methods under test. We attempt 1089

to minimize the effect of using an imperfect reference method 1090

by using methods that reflect the upper and lower bounds of 1091

the results achievable by all averaging-based methods, which 1092

address uncertainty by averaging the results from multiple 1093

sources. Averaging-based methods encompass an important 1094

subset of object localization methods. In particular, since we 1095

assume static targets, methods based on Kalman filtering would 1096

essentially compute a weighted average of observations since 1097

the motion model would predict no motion. 1098

For both reference methods, we first compute an estimate 1099

of the target object’s position according to each robot. This is 1100

done by taking the CoG of the self-localization distribution for 1101

each robot, and from there, finding the position that corresponds 1102

to the observed range and bearing to the target. We use the 1103

center of the sensor models for both range and bearing in this 1104

computation. The estimates from each robot are then averaged 1105

in x and y. 1106

The lower bound reference method is a simple nonweighted 1107

average (AVG), which is the least informed way to use averag- 1108

ing. As an upper bound, we use an “ideally weighted average” 1109

(IWAVG), where weights are computed using ground-truth 1110

information. Note that this method represents an upper bound 1111

on the performance achievable by averaging-based approaches; 1112

it is not an absolute upper bound on the performance of any 1113

alternative method. Also, it is important to keep in mind that the 1114

IWAVG method produces results that would not be achievable 1115

in a real system since robots obviously do not have access 1116

to the ground-truth information used to compute the idealized 1117

weights. 1118

The weights in the IWAVG method are computed as follows. 1119

Consider M robots observing a target, where robot i observes 1120

the target at pi. The fused estimate p obtained by IWAVG is 1121

given by 1122

p =
∑M

i=1 wi · pi∑M
i=1 wi

. (6)

Each weight wi is computed by 1123

wi =
‖piq‖−1

∑M
j=1 ‖pjq‖−1

(7)
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where q is the ground-truth position of the target, and ‖piq‖1124

denotes the distance between pi and q.1125

E. Exploring the Input-Error Landscape1126

To explore the input-error landscape, we used idealized data1127

corrupted by different types of artificially introduced input1128

errors to span the different axes of our landscape. First, we1129

logged 30–60 s worth of data from a number of runs of layouts1130

1 and 2 from Fig. 10. These data included all observations of1131

landmarks and the target. Then, we ran algorithm 3 on the1132

log files. The types of input errors considered at step 1 were1133

systematic errors and random noise on both range and bearing1134

measurements to the ball, false ball detection, and errors in self-1135

localization. Self-localization errors were created by adding1136

errors of all the previous types to landmark observations. The1137

value of n in step 2 was 20 for the experiments presented here.1138

The idealization at step 4 was performed using ground-truth1139

information and only needed to be done once per log file.1140

Algorithm 3. Systematic analysis of the input-error land-1141

scape.1142

Require: set of all log files obtained using layouts 1 and 2.1143

Ensure: statistics about the input-error landscape.1144

1. for all type T of artificial input errors do1145

2. for i = 0 to n do1146

3. for all logfile F do1147

4. Ideal ← create idealized data from F1148

5. Corrupted ← corrupt Ideal by errors of type T1149

6. Result ← process Corrupted logfile1150

7. end for1151

8. Compute statistics for this run of all logfiles1152

9. end for1153

10. Compute overall statistics for errors of type T1154

11. end for.1155

Data corruption (step 5) was performed as follows. In our1156

experimental setup, range estimates are mainly subject to1157

multiplicative errors since we assume that range uncertainty1158

increases as the range to the target increases. This assumption1159

is justified by two observations. First, range errors usually1160

originate from errors in object segmentation in the image; for1161

instance, the width of the object in the image may be overes-1162

timated because the image is blurred due to camera motion.1163

Second, an error of one pixel in object segmentation induces1164

a range error that has a magnitude proportional to the distance1165

to the object since we estimate the range to an observed object1166

by comparing its size (in millimeters) in the real world and its1167

size (in pixels) in the image, modulo the optical parameters of1168

the camera. Given this, we computed an artificially corrupted1169

range estimate ρc from an ideal range estimate ρi as follows:1170

ρc = ρi ·
(
1 + δρsys + δρran

)
(8)

where δρsys and δρran are the percentages of systematic errors1171

and random noise introduced, respectively. Random noise was1172

uniformly distributed.1173

Fig. 11. Systematic bearing errors added to ball observations. Our methods
perform considerably better than the best results achievable by weighted
averaging, represented by the upper bound IWAVG method.

Bearing estimates are typically affected by additive errors, 1174

e.g., due to pan joint position uncertainty. As such, we com- 1175

puted an artificially corrupted bearing estimate θc from an ideal 1176

bearing estimate θi as follows: 1177

θc = θi + θθ
sys + θθ

ran (9)

where θθ
sys and θθ

ran are the amounts of systematic errors and 1178

random noise introduced, respectively. 1179

False positives were introduced by replacing randomly cho- 1180

sen observations with random values within the measurement 1181

domain. A value δfp indicates the percentage of observations 1182

that were corrupted. 1183

The rest of this section shows the results of applying algo- 1184

rithm 3 to the data collected in our scenarios. 1185

F. Corrupted Target Observations 1186

The results for the runs where input errors were introduced 1187

only on target observations are presented in Figs. 11–14. The 1188

graphs show the average errors in the fused object-position 1189

estimates for each method, averaged over 20 runs, versus the 1190

amount of introduced input error of the given type. Note that 1191

in these graphs, self-localization is based on perfect landmark 1192

observations. Therefore, the overall self-localization distribu- 1193

tion in these cases was both precise and accurate; as such, 1194

the results shown here demonstrate the effects of input errors 1195

on the object observations only. Accordingly, the fact that 1196

our method considers self-localization uncertainty should have 1197

little or no effect on these results. The differences between our 1198

methods and the reference methods in these graphs show the 1199

effects of using fuzzy fusion as opposed to averaging-based 1200

methods. 1201

In Fig. 11, the results for systematic bearing errors on ball 1202

observations are shown. Here, we see that our methods perform 1203

considerably better than even the upper bound IWAVG method. 1204

Even the most drastic approximations outperform the reference 1205
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Fig. 12. Random bearing errors added to ball observations. Our methods
perform slightly better than the upper bound IWAVG method, although the
absolute values are similar.

Fig. 13. Systematic range errors added to ball observations. The reference
methods perform slightly better than our methods, although the absolute values
are similar.

Fig. 14. Random range errors added to ball observations. The reference
methods perform slightly better than our methods, although the absolute values
are similar.

Fig. 15. False-positive ball observations added. The methods perform simi-
larly, except for the upper bound IWAVG. Since this method has knowledge
of the false positives (via the ground-truth information used to compute the
weights), it obviously drastically outperforms other methods.

methods for relatively small bearing errors. In particular, note 1206

that the 2BB method, which requires very little bandwidth, 1207

consistently outperforms the reference methods. 1208

Fig. 12 shows the results for random bearing errors on ball 1209

observations. Again, our methods outperform the reference 1210

methods, although to a lesser extent. In particular, the approxi- 1211

mations suffer from the lack of consistency in the data, although 1212

the 2BPC method still performs well. 1213

We see the results for systematic and random range errors 1214

on ball observations in Figs. 13 and 14. In these cases, even 1215

the lower bound AVG reference method outperforms all our 1216

methods, although the absolute values of the errors are fairly 1217

similar. Interestingly, all presented approximations perform 1218

nearly as well as the full method, except the 1BB approxima- 1219

tion, which suddenly collapses when errors reach a fairly small 1220

threshold. 1221

Fig. 15 shows the results obtained when some observations 1222

are replaced with false positives. In this case, the upper bound 1223

IWAVG method drastically outperforms the other methods. 1224

This is understandable since the ground-truth information used 1225

to compute the weights for the averaging gives the method 1226

effective knowledge about which observations are false posi- 1227

tives. Our methods outperform the lower bound AVG reference 1228

method, however. Note that, again, the 2BB method performs 1229

quite well, matching the performance of the 2BPC method, 1230

which requires substantially more bandwidth to implement. 1231

Recall that we did not use any filtering in the experiments 1232

presented here, for a real application filtering would likely 1233

provide a substantial improvement in performance, particularly 1234

in the presence of false positives. 1235

G. Corrupted Landmark Observations 1236

Since changes to self-localization estimates result in nonlin- 1237

ear changes in object-position estimates, it is not informative 1238

to show the results of separately applying each type of input 1239

error to landmark observations. Instead, to examine the impact 1240
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Fig. 16. Fused error versus combination of translational self-localization
errors from all robots. Only points where orientation errors are small are
considered. The fact that the slope is less than 1 indicates that there is at
least some compensation for errors in self-localization. All methods perform
similarly.

Fig. 17. Fused error versus combination of self-orientation errors from all
robots. Only points where translational errors are small are considered. The
absolute values are not very informative, but the performance of our fusion
methods is visibly better than even the upper bound IWAVG.

of self-localization errors, we gather data for all runs in which1241

only landmark observations were corrupted.1242

In Fig. 16, we plot the error in the fused object-position1243

estimate for each method versus the combined translational1244

(straight-line) errors, also called (x, y) errors, in the self-1245

localization estimates of all robots. The errors are combined1246

using the square root of the sum of squares (SRSS) of the1247

errors from the three robots. In other words, we use the vector1248

length of the errors. Only cases where the combined orientation1249

errors are below 5◦ are considered since we want to isolate the1250

impact of translational errors in self-localization. In this case,1251

the methods perform similarly, with the IWAVG performing1252

slightly better than other methods.1253

In Fig. 17, we plot the error in the fused object-position es-1254

timate for each method versus the combined orientation errors1255

in the self-localization estimates of all robots. The orientation1256

Fig. 18. Plot showing (x, y) estimates of self and ball position, for each robot,
during a sample run of layout 3.

Fig. 19. Plot showing orientation estimates for each robot during the course
of a sample run using layout 3.

errors are combined in the same way as the translational er- 1257

rors using the SRSS method. Only cases where the combined 1258

translational errors are below 100 mm are considered since, in 1259

this case, we want to isolate the impact of orientation errors 1260

in self-localization. Our methods all seem to outperform both 1261

reference methods, and the degradation of our methods with 1262

respect to the amount of data required is quite smooth. 1263

In both figures, each point corresponds to the average error 1264

over one run, for one type and amount of introduced error on 1265

landmark observations. First-order trend lines computed using 1266

regression are added to clarify the data. 1267

H. Live Experiments 1268

We now present the results based on real data, which are 1269

obtained using layout 3 from Fig. 10. These results reflect one 1270

particular point on the input-error landscape. In each run of the 1271

experiment, one of the robots moves forward approximately 1272

300 mm, turns right approximately 90◦, and, again, moves 1273

forward approximately 300 mm. All robots are observing land- 1274

marks and the ball throughout each run. We collected data for 1275

20 runs of layout 3, but one run ended up being unusable; we 1276

present the results for the other 19 runs. 1277

Fig. 18 shows the self-localization and target object estimates 1278

for each robot during one run of layout 3. Fig. 19 shows the 1279
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Fig. 20. Results for each method, averaged over 19 runs of layout 3.

orientation estimates for the same run. These plots give a rough1280

indication of the types and amounts of errors contained in1281

the data. Range was typically overestimated probably due to1282

imperfect vision calibration. Bearing and orientation estimates,1283

on the other hand, were fairly accurate. This gives an idea as1284

to where on the input-error landscape the real data case we1285

considered was situated. The average and the standard deviation1286

of the fused estimate error for each method over all runs of1287

layout 3 are shown in Fig. 20. In this case, our methods perform1288

slightly worse than the reference methods. This is consistent1289

with data from the case in the systematic analysis where random1290

range errors were introduced (Fig. 14).1291

I. Discussion1292

The experiments presented here have examined the input-1293

error landscape of our method. It is apparent that, in the1294

presence of bearing and orientation errors, our methods tend1295

to outperform even the upper bound reference method. To a1296

lesser extent, our methods are not as effective when faced with1297

range errors. Recall that the upper bound reference method1298

could not be achieved in a real system since it uses ground-truth1299

information to compute the averaging weights.1300

Another important observation is that the approximations1301

showed reasonably graceful degradation as the bandwidth re-1302

quirements were lessened. As expected, the approximations1303

yielded less consistent and less accurate results as the amount1304

of shared information was decreased. However, in a number of1305

cases, the parametric 2BB method performed particularly well,1306

particularly considering the small amount of information that1307

needs to be sent when using this approximation. This type of1308

graceful degradation allows one to make an informed decision1309

regarding the tradeoff between bandwidth and accuracy on an1310

application-specific basis.1311

In the real data experiment, range errors were considerable,1312

whereas bearing errors were less apparent; the results of this1313

experiment are consistent with the results of the systematic1314

analysis of the input-error landscape.1315

The fact that our method is consistently better at dealing1316

with bearing and orientation errors indicates that our fuzzy1317

Fig. 21. Example of a situation where range overestimation results in our
method performing worse than simple averaging.

fusion approach has certain robustness with respect to these 1318

types of input errors, even beyond the tolerance encoded into 1319

the sensor models. We believe that there are two main reasons 1320

for this. First, our method correctly represents and propagates 1321

uncertainty in self-localization, including orientation uncer- 1322

tainty. Therefore, orientation errors are less likely to affect the 1323

object-position estimates exchanged between robots. Second, 1324

since our method is set-theoretic, it is better able to handle the 1325

nonlinearities that result from bearing and orientation errors. 1326

Specifically, we compute all possible positions where an object 1327

could be and use all of these in the fusion step; this avoids 1328

the heavy loss of information that results from approximating 1329

estimates as crisp positions before they are fused. This loss 1330

of information is of particular significance when dealing with 1331

bearing errors since even small bearing errors can result in large 1332

position errors. 1333

The reason our method is significantly better at dealing with 1334

bearing errors is likely also the reason why it is slightly less 1335

effective at dealing with range errors. Tolerance to bearing 1336

errors implies that each robot must consider many positions as 1337

possible for a given object; these positions are often laid out on 1338

an arc. If range errors occur, a large number of these positions 1339

are likely to be wrong. In such a situation, the intersection 1340

that reflects the agreement between robots may also be wrong. 1341

Fig. 21 shows a simple example of a situation where this might 1342

occur. In most cases, it is useful to share as much information 1343

as possible; however, in some cases, sharing less information 1344

could result in more accurate results. 1345

The performance of our method with respect to range errors 1346

can be improved by increasing the width of the range sensor 1347

model at the expense of reduced precision. Alternatively, we 1348

can reduce the width of the bearing sensor model at the expense 1349

of a reduction in performance with respect to bearing errors. 1350

We have verified that, by changing these parameters, albeit by 1351

a fairly large amount, we can adapt our method so that its per- 1352

formance is very close to that of the IWAVG reference method 1353

with respect to both range and bearing errors. For the presented 1354

experiments, however, we have preferred to use the original 1355

tuning, which was intended to reflect (very roughly) the error 1356

characteristics of the actual vision sensors used. This tuning 1357

is also particularly interesting since it shows how our method 1358

offers a significant improvement in performance with respect 1359

to bearing errors, while suffering only a slight degradation in 1360

performance with respect to range errors. 1361
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It is also interesting to note that without the systematic1362

analysis using artificially modified data, these aspects would1363

not have been apparent. Using real data is obviously important1364

for testing any robotic system due to the noise and other errors1365

inherent in such systems. However, as we have shown, it can1366

be useful to use artificial data to more fully characterize the1367

performance of a given method.1368

VII. CONCLUSION1369

In this paper, we have presented a method for addressing the1370

multirobot object localization problem. The problem is seen1371

as an information fusion problem, and our approach relies on1372

techniques from fuzzy logic to represent and combine infor-1373

mation arriving from different sources at different times. The1374

resulting method has few parameters to tune, and it is robust1375

with respect to sensor model calibration. Our method also fully1376

considers self-localization uncertainty when computing object-1377

position estimates.1378

The computational, memory, and bandwidth requirements1379

of our method, particularly considering the approximations1380

that can be used if resources are particularly limited, allow1381

the method to be implemented on fairly limited platforms.1382

We have successfully tested and used implementations of the1383

approximate coordinate transformation and the 2BB global1384

grid approximation on teams of Sony AIBO robots in earlier1385

RoboCup competitions [44]; in this domain, multirobot ball1386

localization was performed at 1 Hz on-board the robots.1387

The evaluation of our method was based on a rather novel1388

type of experimental analysis. The analysis systematically de-1389

fined and explored an input-error landscape for our method1390

by examining the effects of applying various types of errors1391

to each of the method’s inputs. Also, instead of using poorly1392

implemented versions of alternative approaches as reference1393

methods, we chose to compare our method with upper and1394

lower bounds of averaging-based approaches. We have also1395

presented an experiment with real data, which was consistent1396

with the systematic analysis. This evaluation has proven to1397

be extremely useful, and it can be seen as a methodological1398

contribution in itself. The experiments showed that our method1399

is particularly effective at dealing with bearing errors in object1400

observations and orientation errors in self-localization.1401

There are a number of ways in which this paper could be1402

improved and extended. For one thing, more scalable repre-1403

sentations of fuzzy sets, as well as suitable approximations1404

of these, could be explored since grids are not adequate for1405

representing very large (e.g., outdoor) environments. Also, this1406

paper does not attempt to address the dynamic aspects of the1407

object-localization problem. Prediction and filtering applied in1408

various places could improve the performance of the method1409

by taking domain information into account. The purpose of1410

this paper was to examine the fusion process in isolation; an1411

interesting extension would be to include an examination of1412

the relevant temporal aspects. Extensions to our method for1413

considering temporal aspects do exist; however, these have yet1414

to be fully evaluated. Finally, it would be interesting to see how1415

our methods compare to other alternative approaches, which do1416

not rely on averaging.1417
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