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Editorial

Using semantic knowledge in robotics
There is a growing tendency to introduce high-level semantic
knowledge into robotic systems and beyond. This tendency is
visible in different forms within several areas of robotics. Recent
work in mapping and localization tries to extract semantically
meaningful structures from sensor data during map building, or
to use semantic knowledge in the map building process, or both. A
similar trend characterizes the cognitive vision approach to scene
understanding. Recent efforts in human–robot interaction try to
endow the robot with some understanding of the human meaning
of words, gestures and expressions. Ontological knowledge is
increasingly being used in distributed systems in order to allow
automatic re-configuration in the areas of flexible automation
and of ubiquitous robotics. Ontological knowledge was also used
recently to improve the inter-operability of robotic components
developed for different systems.
While these trends havemany questions and issues in common,

work on each one of them is often pursued in isolation within a
specific area, without being aware of the related achievements in
other areas. The aim of this special issue is to collect in a single
place a set of advanced, high-quality papers that tackle the problem
of using semantic knowledge in robotics in many of its different
forms.
The submissions to this special issue made it clear that there

are many ways in which semantic knowledge may play a role in
robotics. Interestingly, they also revealed that there aremanyways
in which the term semantic knowledge is being interpreted. Before
turning to the technical papers, then, it is worth spending a few
words on this matter.

1. Semantic knowledge in robotics

A recurring question by the reviewers, and debate among
reviewers, was triggered by the request in the Call for Papers that
submissions should

‘‘report novel contributions related to the creation, representa-
tion and use of semantic knowledge in autonomous robots’’.

The question in many cases was ‘‘What in this paper is supposed
to be semantic knowledge?’’.
The question of what should count as semantic knowledge

has been asked repeatedly in the history of philosophy. In more
recent times, it has been the subject of much debate in the
Artificial Intelligence (AI) community, especially in the area of
knowledge representation and reasoning (KR), and it is now
central to the development of the semantic web. As general
sources for these topics, we refer to the textbooks by Russell and
Norvig [1], by Brachman and Levesque [2], and by Antoniou and
van Harmelen [3].
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Interestingly, many of the views on semantic knowledge that
have been adopted (explicitly or implicitly) by the authors and
by the reviewers of submitted papers had appeared before in this
debate. Tomake a long story short, let us emphasize two important
points about semantic knowledge, which have long been discussed
in KR, andwhich are central in the present context: (1) the need for
an explicit representation of knowledge inside the robot; and (2) the
need for grounding the symbols used in this representation in real
physical objects, parameters, and events.

1.1. Explicit representation

In knowledge-based systems, the term semantic knowledge
usually denotes descriptions of the concepts and relations used
to define the domain of interest. The main hypothesis in the
field of KR is that these descriptions are represented explicitly
inside the system, that is, in a way that allows the system to
access and manipulate them. Employing pieces of knowledge in
a robot, then, requires that each and every concept be linked
to other concepts by declarative statements in terms of the
domain theory. The domain theory, together with some inference
engine, can be used for inferring new facts about the domain
from known facts. The archetype of a knowledge base in KR
is a theory in first-order logic, but many other formalisms
can be used, including probabilistic representations (e.g., Bayes
networks), constraint networks, Description Logics, or planning-
related representations. In fact, what formalism to use usually
depends on the specific domain: in KR terminology, a formalism
has to be representationally and inferentially efficient to be useful
for a task.
Irrespective of the specific formalism used to represent

semantic knowledge, the point to keep in mind is: we have no
semantic stance yet, if we simply attach labels (like chair, or
kitchen, or an event likescoring a goal) to a set of sensor data,
like a region in a camera image. A robot that is able to represent and
employ semantic knowledge must certainly be able to do object
recognition or classification in some sense, i.e., to attach labels to
compact subsets of its sensor data, in order to get a foothold for
some type of interpretation of its environment. However, these
labels have to be embedded in a domain theory in order to allow
the robot to do reasoning. To become meaningful categories, they
need to co-exist with other categories in some form of ontology, be
it represented as it may. ‘‘Bare’’ labels unconnected to an ontology
may induce meaning to a human observer, but this meaning is
owed to this observer’s understanding of the domain, not the
robot’s: the robot cannot use these labels as long as they are
purely syntactic. Ancient AI folklore had the nickname of wishful
mnemonics for such labels that boremeaning for human observers,
and only for them.
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1.2. Symbol grounding

Using a semantic stance in robotics involves a specific challenge:
All elements used in the knowledge representation have to be
effectively grounded in the robot’s sensor and motor signals. So,
KR for robots has to add to ‘‘regular KR’’ the means to recognize
objects and/or assess the truth or falsity of propositions from the
sensor data stream of the given sensor configuration in the given
environment. In most practical cases, the robot should be able to
do this in real time.
This is, of course, an enormous requirement — some may even

say it is intimidating. It is closely related to the symbol grounding
problem, [4] which is generally perceived as fundamental. Exactly
how fundamental it is, is still being debated; in any case, robotics
should not wait until the problem is solved, before turning to
using semantic knowledge. The good news is: grounding facts and
concepts in sensor data on-line and on-board the robot appears to
be doable in some cases — this Special Issue contains a number
of examples. The bad news is: Although KR has a healthy number
of representation and reasoning formalisms on stock that are
ready to be employed on systems that can rely on their human
users for having their symbols grounded, matters are different
for knowledge-based robots. So, in choosing a KR formalism for a
robot supposed to use semantic knowledge, onemust also consider
the need to provide the grounding for all represented concepts.
Theremaybe representation formalisms that are better suited than
others in this context.

2. In this issue

Finally, an answer needs to be given to the obvious question:
If using semantic knowledge on a robot is difficult, why should
we be working on it in the first place? The collection of papers
contained in this Special Issue provides a constructive answer to
this question by example. The papers tackle several facets of the
problem of endowing a robot with the capability of acquiring and
using semantic knowledge. They can be seen along three aspects,
which typically co-exist in a knowledge-based robot.

The first aspect, namely, acquiring semantic knowledge from
sensor data on board a mobile robot, is prominent in the first
five papers in this issue. Environment sensor data considered here
consist of 2D or 3D laser data, camera images, or both; categories
for recognition are handcrafted, or learned as part of the process;
these categories include objects of limited sizes and fixed forms,
like a cupboard, as well as environment structures of unbounded
sizes and arbitrary forms, like a pathway.
To start with the papers featuring learning, Modayil & Kuipers

take the most basic approach by employing unsupervised learning
on 2D laser scans for generating object representations. D’Este &
Sammut describe amethod for ILP-based learning of concepts from
camera data in interaction with a human teacher. Posner et al.
apply supervised learning for classifying objects and structures in
large scenes available in 2D/3D laser and camera data.
Yet, data recorded by a robot interacting with its environment

contain more than just a set of distal readings of environment
texture or geometry, which hit the robot like rainfall — the
interaction itself is part of the sensing, and of the learning in
the case of the three papers just mentioned. So, spatio-temporal
information about robot pose, and teacher interaction (D’Este
& Sammut) is in the background of the learning process here.
Therefore, the objects or structures that get recognized by the
trained classifiers are naturally located in space. Posner & al. use
that for generating geometrical or spatial scene descriptions, or
‘‘semantic robot maps’’, that involve the detected categories.
The remaining two papers under the first aspect focus exactly

on this: using sensor data interpretation routines, which may
be trained or canned, for building semantic maps. Nüchter &
Hertzberg elaborate on the processing pipeline for getting from
individual 3D laser scans to a consistent geometry-plus-categorical
environment representation; they also use some feedback from
semanticmap contents to lower-level sensor data processing. Rusu
et al. start from 3D laser scan data using similar low-levelmethods,
but later use for processing them the prior knowledge that their
robot operates in aworld of kitchen objects (cupboard, dishwasher,
etc.); part of that knowledge is available in the explicit form of a
Description Logic ontology.

The second aspect concerns the ability to use semantic
knowledge for improving planning and control aspects in the robot
itself. It is present in most papers in this issue, but it is central to
the following five.
Bouguerra et al. use semantic knowledge, which comes in a

Description Logic and a probabilistic domainmodel, formonitoring
the execution of explicitly represented plan actions. Both explicit
and inferred expectations about action results are used for
verifying by observation successful action execution. The paper
by Galindo et al. emphasizes the plan generation aspect prior to
execution, by basing it on a semanticmap asmentioned above. This
allows spatial andpropositional knowledge about the environment
to be used efficiently in combination for planning. Stulp & Beetz
focus on plan optimization in the context of plan generation and
execution. Plan generation is based on a declarative planning
domain description language (pddl, to be precise) and an off-the-
shelf planner; optimization applies learned prediction of effects for
generated actions, based on an execution model.
Ferrein & Lakemeyer apply planning and reasoning by means

of a different representation framework than the other papers,
namely, theGologdialectReadylog. This includes plan generation,
execution and monitoring, where the paper emphasizes handling
dynamic domains in this context. Calisi et al. take a representation
rather than a plan generation approach for specifying robot
control and improving performance, centering around the notion
of context. Contexts are explicitly represented and manipulated,
resulting in a context-based architecture that features rule-based
control.

The third aspect is the usage of semantic knowledge in robotics
motivated in particular tasks. Most of the papers in this collection
focus on methods and concepts around semantic knowledge in
robotics rather than on applications, so this aspect is not prominent
here. However, it is important in the last one by Holzapfel et al.,
which deals with the problem of learning semantic knowledge
in interaction with a human. The approach assumes that a robot
(a humanoid one in this case) that is supposed to cooperate
with humans needs to describe its environment in the same
terms like the human does, so effective human–robot interaction
(HRI) requires parallel or similar categories for perceiving and
describing the common world. The paper by D’Este & Sammut in
this collection shares this view; the one by Rusu et al. with its aim
of modeling human-designed environments in human categories
also has a strong flavor of it. A number of projects aiming at HRI
reported in the literature would agree.
Based on the state of the art in using semantic knowledge in

robotics, as presented in this special issue, it is still quite a way to
go, until a robot ontology can possibly resemble a human one, to be
in tune with human communication based on speech or gestures.
Yet the first steps are being taken.
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