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Abstract

Topology-based maps are a new representation of the workspace of a mobile robot,
which capture the structure of the free space in the environment in terms of the
basic topological notions of connectivity and adjacency. A topology-based map can
represent the environment in terms of open spaces (rooms and corridors) connected
by narrow passages (doors and junctions). In this paper, we show how to enrich
a topology-based map with geometric information useful for the generation and
execution of navigation plans. Both the topology-based map and its geometric in-
formation are automatically extracted from sensor data. We illustrate the use of
topology-based maps for planned behavior-based navigation on a real robot.

Key words: Environment modeling, topological maps, occupancy grids,
behavior-based navigation, mathematical morphology.

1 Introduction

The most common representations of the space in mobile robotics can be
grouped in two classes: metric maps, and topological maps. A metric map rep-
resents the environment according to the absolute position of the objects. A
topological map is a more abstract representation that describes relationships
among features of the environment, without any absolute reference system
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(7; 15; 6; 3). Topological maps are usually represented in graph form. Un-
fortunately, there is no uniform semantics associated with these graphs, and
the meanings attributed by different authors to the nodes and links are widely
different. For example, in the maps defined by Kuipers and Byun (7) nodes rep-
resent places, characterized by sensor data, and arcs represent paths between
places, characterized by control strategies. By contrast, the maps defined by
Thrun (15) are obtained by partitioning a probabilistic occupancy grid into
regions (nodes) separated by narrow passages (arcs) according to a measure
of local clearance.

In (4) we have proposed topology-based maps as a high-level representation of
the working space. Topology-based maps are intended to capture the topo-
logical structure of spatial information, and have a uniform semantics based
on concepts from general topology. Thanks to their abstract nature, topology-
based maps are compact and fairly stable with respect to sensor noise and to
small changes in the environment.

Topology-based maps contain information about the connectivity of the space,
which is needed to plan a navigation strategy. Autonomous robots navigating
in real-world, dynamic environments typically do not need a detailed global
metric model, since the generation of the actual trajectory is usually done
reactively during execution. Some geometric information, however, is often
necessary in order to plan a correct navigation strategy: e.g., the planner
should distinguish between a corridor-like space that can be traversed by wall
following, and an open space that should be traversed by dead reckoning. For
this reason, many authors annotate their topological maps with some metric
information (12; 11; 14). Often, these maps are given a priori.

In this paper, we show how topology-based maps can be automatically built
and annotated with geometric information using sensor data. We start from
a fuzzy occupancy grid built from sonar ranges, and extract a topology-based
graph in which nodes represent wide free spaces and arcs represent passages
connecting these spaces. We then use techniques borrowed from the field of
image processing to compute the shape parameters of each space: these param-
eters allow us to classify the nodes into corridors and rooms, and to associate
them with geometric information like length, width, and orientation.

2 Topology-based maps

In this section, we show how to partition the environment into a set of open
spaces (rooms and corridors) connected by narrow passages. An illustrative
example is given in Section 4 below.



Let I be a fuzzy gridmap, defined as a two-dimensional array whose elements,
called cells, have real values in the interval [0,1]. In our case, the gridmap is
a representation of the empty space built from range data, where the value in
each cell represents the degree of belief in the emptiness of the corresponding
portion of the environment (8; 5). Note that the procedure below could be
applied to maps representing other local features of the environment, like
temperature or odor.

We then proceed to extract topological information from this gridmap. The
key step for this is to think of the gridmap as a gray-level image, and to use
techniques from image processing to analyze it. In particular, we use fuzzy
mathematical morphology (2) to gather information about the shape of the
empty space represented in the gridmap; and fuzzy digital topology (10) to
extract the topological structure of this information.

Mathematical morphology deals with the extraction of shape from a digital
image. The shape to be extracted is specified in terms of a structuring element,
a small pattern that is matched against the neighborhood of each pixel in the
image. The matching rules are defined by a pair of operators, dilation and
eroston. In our case, the shapes we want to extract are large open spaces. To
achieve this, we use a conic structural element to expresses the fuzzy concept
of a large space: intuitively, a larger open space is one in which we can fit
a larger portion of the structuring element. This structuring element is used
to filter the fuzzy map by an opening operator, that is, erosion followed by
dilation. The result of applying this operator to our fuzzy gridmap is a new
gridmap where the value of each cell represents how much that cell belongs to
a large open space.

The morphological information represented in the transformed gridmap is still
dispersed into small portions. To capture the topological structure of this
information, we use a watershed algorithm (16) to partition, or segment, the
gridmap into a set of connected components. The intuition here is to see the
gridmap as a landscape with valleys and peaks, and to compute the watershed
that separates the valleys. The watershed partitions the gridmap into a set of
connected regions, which can be interpreted as “large open spaces” bounded by
occupied space or narrow passages. These regions constitute the nodes of our
topology-based map, where the arcs represent connections between adjacent
regions.

Figures 1 to 3 in Section 4 below illustrate the above steps. More details on
this procedure can be found in (4).



3 Extracting geometrical information

In order to capture all the information necessary to perform complex naviga-
tion tasks, we extract geometrical features from the partitioned gridmap. The
image processing field offers several well defined techniques to gather this kind
of information from a gray-level image. The so called regional descriptors can
represent the geometrical properties of the regions in the image. Note that in
our case regions correspond to nodes of the topology-based map, and represent
parts of the space. A particularly useful class of descriptors for our goals are
the moments.

Given a fuzzy gridmap, we indicate by I(z,y) the value of the cell (z,y). The
moment of order p + ¢ is defined by
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Moments have several attractive properties. For instance, they fully charac-
terize the information contained in the image: a uniqueness theorem (9) guar-
antees that, under general conditions, the infinite set of moments my,, p,q =
0,1,... uniquely determines I(x,y) and vice versa. Moreover, it is easy to as-
sociate a physical meaning to each moment. For example, in a binary map the
moment mgy represents the area of the region of I with non-zero values. (The
extension to a fuzzy map is natural.)

For our purposes, we use moments to extract, for each region in our partitioned
gridmap, the following features:

center
orientation
width
length
eccentricity

The center synthesizes the notion of position of the region, and it is defined
by
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Based on the center of a region, we can define central moments by

Hpq = ZZ(QE — )Py — 9)U(z,y).



These moments are invariant with respect to translation and scaling of the
figure.

If the region is elongated, it is possible to define an orientation with respect to
the coordinate axis. To do this, note that the second order central moments
can be organized in the following matrix:

H11 H12
M1 H22

The eigenvectors of the matrix point in the directions of maximal region
spread, with the constraint that they are to be orthogonal. They are called
principal azes. The orientation 6 of the region can be described by the largest
eigenvalue and corresponding eigenvector. € can be interpreted as the rotation
that makes the matrix of second order moments diagonal. The eigenvalues
measure the degree of spread, and as a consequence are proportional to the
width and length of the region.

The last parameter that we use to characterize a region of space is the eccen-
tricity, defined by

. po2c08%(0) + pggsin?(0) — 1 sin®(6)
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that tells us how much the region is elongated or rounded. This parameter is
useful to distinguish room-like regions from corridor-like regions, and therefore
to make a decision about the motion strategy to perform. Note that with a
small number of parameters, each region is enriched with a large amount
of information useful to perform navigation tasks. Obviously, it is possible
to compute more geometrical parameters depending on the task. The ones
described above are those that we have found sufficient for our experiments
in planning and execution of behavior-based robot navigation.

4 Example

In order to illustrate our technique, we show a simple example of extraction
of a topology-based map, and of its corresponding geometric properties. This
experiment has been run on a Nomad 200 robot equipped with a ring of 16
Polaroid ultrasonic sensors in an unmodified office environment.

Figure 1 shows the fuzzy gridmap representing the free space built using the
technique described in (8; 5). Each cell represents a square of side 10cm.



Fig. 1. The fuzzy gridmap of free space for our test environment.

Darker cells indicate more confidence in that cell’s being empty. The environ-
ment consists in two corridors meeting at an entrance hall, and two rooms
cluttered with random furniture. The longer corridor includes a larger area
with some table and chairs, which is visible on the left of the grid. The overall
size of the environment is about 30 x 7 meters.

Figure 2 (left) shows the fuzzy gridmap resulting from the fuzzy morphological
opening of the original gridmap through a conic structural element. Darker
cells indicate areas of space that belong to wider open spaces. Note that the
information in each cell now represents a property of the spatial neighborhood
of that cell rather than a property of the points inside the cell.

Figure 2 (right) shows the regions extracted by topological segmentation of the
above gridmap, together with the axes giving the center, size, and orientation
of each region, computed as described above. The corresponding annotated
topology-based map is shown in Figure 3. Width and length are in meters;
orientation is in degrees from the horizontal axis in the gridmap; center and
eccentricity values are not shown. However, eccentricity is used to classify
each node as either a room or a corridor: each node is given a name from its
class plus a progressive number. The map also associates each arc (genericall
called a “door”) with its position relative to each one of the two regions that



Fig. 2. The morphological opening of the previous gridmap (left), and the corre-
sponding regions (right).

1t connects.

The full extraction procedure, from the gridmap to the final graph, took less
than a second on a Pentium-II processor at 200 MHz in this experiment. The
size of the gridmap was 400 x 280 cells.

5 Behavior-based navigation on topology-based maps

In order to illustrate the possible uses of topology-based maps, we discuss in
this section how we have integrated them in the Thinking Cap (13), a fuzzy
behavior-based navigation system based on the approach proposed in (12).

Like most modern behavior-based architectures, the Thinking Cap goes be-
yond pure reactivity and uses environment models and temporal projection to
plan a specific behavior activation strategy for a given goal in a given environ-
ment, or behavioral plan. A behavioral plan is a set of “situation = behavior”
rules, where situation is a formula of fuzzy logic. These plans are generated
by simple goal regression from knowledge about the preconditions and effects
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Fig. 3. The topology-based map extracted from our gridmap.

of each behavior. Table 1 shows the preconditions and effects for some of the
behaviors implemented in the Thinking Cap.

Topology-based maps contain all the local geometric information needed for
the execution of the navigation behaviors in the behavioral plan, like the
expected position of rooms, doors and corridors. They also contain all the
information needed by the planner to generate a behavioral plan. The static
preconditions in Table 1 (i.e., all but the “at” predicate) are easily verified
on a topology-based map: doors are arcs in the map; corridors and room are
nodes, classified according to their eccentricity; and “partof(x,y)” is true of a
door z and a space y if arc x is incident in y. The “at” predicate is used to do
goal regression. For instance, if we are given the goal to be “at(Room3)” and
we know that Doorl is part of Room3, we can generate the plan

at(Doorl) = Cross(Doorl,Room3)

and post the new goal of being “at(Door1)”. This goal in turn can be achieved
by following Corrl1 if we know that Doorl is part of it, and so on until we post
a “at” goal which is true in the current state.



behavior precondition effect

Cross(d,z) | at(d) A door(d) A partof(d, z) at(x)

Follow(c, z) | at(c) A corridor(c) A partof(z,c) | at(z)

GoTo(z) at(r) A room(r) A partof(z,r) at(z)

Table 1
Preconditions and effects for three simple behaviors.

Figure 4 shows a simple navigation experiment where we use the topology-
based map above. The map is visualized as a set of rectangular areas (rooms
and corridors) connected by gateways (doors). The robot has been given the
goal to be “at(Room9)” while it was at Room3. The planner then has gener-
ated the following plan (shown in a simplified form):

at(Room3) = GoTo(Door4)
at(Door4) = Cross(Door4,Corr4)
at(Corr4) = Follow(Corr4,Door3)
at(Door3) = Cross(Door3,Roomb)
at(Roomb) = GoTo(Door2)
at(Door2) = Cross(Door2,Corr6)
at(Corr6) = Follow(Corr6,Doorl)
at(Doorl) = Cross(Doorl,Room9)

The dotted line in Figure 4 shows the trajectory generated by the robot while
executing this plan in the actual environment. Note that the plan only provides
elastic contraints on this trajectory: the actual trajectory is generated by
the behaviors by reactively adapting to the actual execution contingencies,
including the actual geometry of the environment and obstacles. Also note
that in this experiment localization was based on dead reckoning alone.

More details on our approach to generate and execute behavioral plans can
be found in (12).

6 Conclusions

Topology-based maps provide a new notion of map based on concepts from
general topology. The ability to annotate topology-based maps with geometric
information makes them more useful for autonomous navigation. A peculiar
aspect of our approach is the reliance on techniques borrowed from the field
of image processing to extract the maps from sensor data. The extraction
procedure proved to be robust with respect to sensor noise, and fast enough
to be performed in real time during navigation.
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Fig. 4. A navigation experiment using the above topology-based map.

We have shown that annotated topological maps can be used to generate
and execute navigation plans on one specific robot navigation system. We
speculate that they can be used in a similar way on most other systems that
use a planner to plan a behavior-based navigation strategy (e.g., (1; 11; 14)). In
our future work, we intend to investigate the use of prior structural knowledge
(e.g., about the shape and orientation of rooms) to improve the quality of the
extracted topology-based maps. We also plan to study the use of these maps
to address the important issue of self-localization.
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