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Abstract— This paper describes a realization of a network environment, to a purely distributed approach relying on
robot system for autonomous object localization and identifica- pervasive fixed vision within the environment. In this paper
tion. Developing a "Lost & Found” capability, the use of which —\ye yresent a solution for autonomous object localizatiah an

can be envisaged in a wide range of applicative domains includ- . e . .
ing domestic assistive scenarios, is a challenging task for current identification which attempts to combine the best of both

Al and robotic technology. Indeed, this task is currently one of a@pproaches. The solution is realized and deployed within a
the core challenges within the RoboCup@Home competition. network robot system and relies on the integration of sévera

A number of approaches for implementing a robust and software, robotic and sensory components distributedinvith
general Lost & Found functionality are feasible. In this paper  4yr smart home test environment. Our solution leverages the

we present a solution which integrates state-of-the-art intelli- S . -
gent software, robotic and sensory components in a distributed availability of a particular network robot system consigti

network of cooperating modules. This article describes the de- in an ecology of Physically Embegded Intelligent Systems
sign and implementation of the system, provides a preliminary (PEIS), the PEIS-Home [11]. The infrastructure underlying

experimental evaluation and discusses the applicability of our this approach to networked robotics essentially consists i
approach to the RoboCup@Home challenge. middleware for facilitating the exchange of informatiordan
cooperation between heterogeneous PEIS. A PEIS can be any
software, robotic or sensory component offering a pantiula
This paper deals with autonomous object localizatiofunctionality or service.
and identification within the general setting of domestic With the availability and affordability of robots such agth
assistance, where objects are generic household items. @ioneer [1] and the Roomba vacuum cleaner [4] and with the
goal is to obtain a system that can provide a “Lost & Foundivide use of cameras for surveillance and baby monitoring,
capability which does not rely on ad-hoc characterisitcs ahe idea of combining these technologies towards the aim
the objects (e.g., special colored tags, or any other featusf developing a Lost & Found functionality is particularly
that can be added to facilitate object identification). attractive: they are affordable, easy to setup and use, and
The Lost & Found functionality has important applicationsrequire little maintenance. If, for example, the robot was
in a wide range of applicative domains, including domestispecifically designed for vacuuming the floor but has access
assistive scenarios for elderly people affected by cogniti to surveillance cameras in the house, it is now able to find
decline (e.g., memory loss). Indeed, this task is currentlymisplaced objects that the user instructs it to find. If the
one of the core challenges within one of the robotic comeamera happens to break, the robot can still perform its
munity’s principal benchmark, namely the RoboCup@Homeesignated task of strictly vacuuming.
league [10] of the RoboCup competition [9]. The aim of In this article we describe our implementation of the Lost
RoboCup@Home is to foster the development of usef& Found task using the PEIS middleware and a number of
robotic applications that can assist humans in everyday lifstate-of-the-art vision algorithms. The fundamentalititn
The participants of the Lost & Found challenge are requirednderlying our approach is to break the task down into a
to provide a system that will find a number of objects in amlobal, fixed-vision based object localization stage fold
environment without human interference. Each particiggnt by a local verification of candidate objects on board a mobile
given some time to teach their system the set of previoustpbot. The former phase provides a coarse but extremely
unknown household objects, after which the objects afast estimate of the location of the object(s) which are
placed randomly in a mock-up domestic environment ant be found, while the latter refines this information to
the robot is then required to locate them. assess whether the sought after object(s) match the initial
Implementing Lost & Found is a challenging task forhypothesis. Also in this article we present a preliminary
current Al and robotic technology. At least two generakxperimental evaluation of the system, in which we measure
approaches for implementing a robust and general Lobbth the accuracy of the global estimation and the perfor-
& Found functionality are feasible, from a ‘super-robot’mance of the entire system. Finally, we provide a discussion
approach in which one robotic platform performs the enen the advantages and disadvantages of the approach as well
tire task by itself leveraging its mobility to explore theas on the adecquacy of the implemented approach to the

I. INTRODUCTION
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RoboCup@Home challenge.

II. SYSTEM OVERVIEW

As mentioned, there are a number of approaches to tackle
the Lost & Found problem. These solutions range from
informing the robot on a semantic level of the approximate
position of the object (e.g., in the kitchen) and having the
robot go there and confirm the fact that it is there. This
of course would require prior knowledge about the object
and where it was placed. Another approach would be to
simply have a robot wander around and analyze everything
it sees and attempt to match it to an object that it is
looking for. This approach is not only inefficient but also
very computationally expensive as feature-based congaris
to match each scene against a known image can be very
memory intensive. Random navigation in the environment
could take a very long time, even if a map of the environment
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is known and the robot is able to keep track of where it has
been. A third alternative consists in using very good fixed

cameras that provide a high quality image covering the whole
environment. These cameras would potentially have to be
able to zoom on an object in order to verify features at a
local level. This camera feature would come at a high cost, The advantage of using a two-step approach is that since
would still require a robot to fetch the object. the fixed vision system is able to see the whole environment,

In a domestic scenario in which robots potentially are alwe are able to quickly identify possible candidates and
ready deployed to address other needs, it makes sense to imeghly estimate their position thus eliminating the need f
affordable, off-the-shelf technology which can complemerna random walk of the robot. The rough position estimate is
the robot’s functionality. The implementation of the Lost &acceptable for our task since we have a mobile robot platform
Found functionality described herein relies on the use ofith a PTZ camera through which it can inspect candidate
inexpensive fixed video cameras found in any electroni@stopbjects more closely (as long as the robot is ‘in the area’
and a mobile robot used for domestic cognitive assistancef the object). Furthermore, if some sort of a pre-procepsin
This, together with the fact that we use the PEIS-Ecologglgorithm is applied, false positive candidates may be lim
middleware, makes the system configurable as well as eixated thus reducing the list of possible candidates, aral as
pandable (e.g., by adding more cameras to extend the reaminsequence the amount of physical seraching that must be
of the Lost & Found functionality). performed by the robot.

Given the task of locating objects in an environment, it is
first necessary to teach the robot an object and then of course
have it go locate it. A clean line may be drawn between Object acquisition is a key component of the system. In
these two phases and as such we developed two differ&@mpliance to the RoboCup@Home regulations, we have
modules; a learning module for data acquisition and a seaghosen to use the user as a teacher for our system. The
module for finding objects. There is no overlap between th&ystem provides a Graphical User Interface (GUI) to enter
two except for the fact that the learning module saves tH&€ required data about each object. All information aglire
information into a knowledge base that the searching modutrough this learning module is stored in a knowledge base.
then accesses in order to perform its task. More about eachAll information gathered in this phase is used during the
module is described in Sections Il and IV respectively. ~search to identify the desired objects. In relation to tséovi

Our approach to object identification and localizatiorlgorithms employed for object identification (explained i
effectively decomposes the problem of seraching for osjecthe following sections), we have chosen to capture the
into two steps. The first step consists in finding potentidPllowing traits for each object:
points of interest (candidates) with a fixed vision systeteab « Object name: ny_favourite_cup,
to see the whole environment. The second step of the process book, ...
is to navigate to the candidate’s position and attempt to uses Color: red, green, yellow, ...

a Pan Tilt Zoom (PTZ) camera on the robot to verify that an « Size: physical object dimensions (length, width and
object is the one of interest. The process can be visualized height)

in Figure 1. In both steps, a combination of state-of-the- « Shape signature:64 normalised distance measurements
art artificial vision algorithms are employed to assess the from the center of segmented object spanning °360
presence within the scene of known objects. around the object (see Figure 2a)

Fig. 1: General flow diagram

I1l. OBJECTACQUISITION

pi Il _box,
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« Local features: features obtained using feature detector IV. CO-OPERATIVE SEARCH
(see Figure 2b)

The search procedure may be called co-operative as it
combines fixed vision and mobile vision (PTZ camera) that
is located on a (mobile) robot platform. This is done, as
previously mentioned, using a two-step process in which the
global part of the system (fixed vision) is responsible for
finding candidates and localizing them in the environment
while the local part (robot) then navigates to these points

e e ! and furhter investigates these candidates. An overview of
(a) Visual representation of a (b) Example of local features. this process can be seen in Figure 4.

shape signature. White crosses denote features.
Fig. 2: Shape signature and local features of an object. m
The name of the object is used as a symbolic link within the Q
system to connect the data acquired and therefore also as é =
key to represent the object. The color is of importance as i z o2

acts as the initial filter for both the global components anc

the mobile platform. The size, that is the physical dimensio [:]

of the object, is used to provide a position estimate for eacl

color blob found in the fixed vision system (more on this

in Section IV-A). A number of shape signatures are savec

for each object describing the various viewpoints. These ar,

utilised when searching for the object, where the signature

are used as a further detection filter for the identification caml

of the object. The local features are obtained using SURF Fig. 4: Overview of the two step process

(Speeded Up Robust Features) [2], which builds on the same

principle as the established detector SIFT (Scale-Inaaria

Feature Transform) [8], and is a relatively fast and robush. Global position estimation

method used in local invariant feature detection. As for the Tha first step, global position estimation, is required to

signatures, also features area detected at various ViBWpOiidentify color blobs of interest and provide their position

of the object, representing how the object could be seerein thgiimate to the second step of local verification. Given a

environmen't. As this is. the mogt'computationally ir?tensiwla]umber of objects to locate, this procedure analyzes the

of the algorithms, we aim to limit its use by performing thégcene in order to identify possible candidate color blolas th

aforementioed filtering stages. More on the local verif@ati ,5ch the colors of the requested objects. This step is Bntire

process is described in Section IV. Overall, the meaningfyaseq on color segmentation. In order to limit the amount

information for an object can be acquired through the GUbential matches, this step is provided witpra-processing

in three easy steps, the combined time requirement for whigdhase consisting of backround subtraction and noise fiieri

does not exceed three minutes. Following this, position estimatioroccurs on the resulting
image, on which fuzzy matching is performed to obtain an

Size estimate of the position of each blob.

Pre-processing.Finding candidate blobs is a rather trivial
process as there are a number of approaches that exist. The
simplest and perhaps easiest is to use color segmentation.
bseriptor %Nm e Using this approach, color blobs found in the image become
points of interest. Notice though, relying on segmentedblo
alone may lead to numerous false positives; if we were
to look for a red box, everything red, including red TV

Color lights, red ornaments, red crayons, everything red would be
returned; see Figure 5b or Figure 5e.
Fig. 3: Overview of object properties Since the global part of the system provides position

estimates of all blobs found to the robot to further explore,

providing a list as concise as possible is desireable, as thi

The details of the learning module are outside the scopeill minimize the time needed to investigate all candidate

of this paper, and the interested reader is referred to [i5] fdocations. We achieve the desired minimized list by perform
further detalils. ing background subtraction. Such a technique is acceptable
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in the scope of the RoboCup@Home challenge as we apessible targets from all fixed camera sources to find the
able to extract objects from the environment to learn themmaximal core overlap, we use a greedy search. This means
giving the system an opportunity to capture the backgrourttiat we use the first match that we find which corresponds
image. Once the data acquisition for all objects is completéo an intersection of all four trapezoids (range, bearing h
they are placed into the environment and remain static untind saturation) over a certain threshold. This reduces the
the completion of the task. These circumstances allow s®arch time significantly. This approach is acceptable dior o

to capture foreground images (Figure 5a and Figure 5qurposes as we are not so concerned about the exact location
and trust the resulting image until the test is completeof the object, but more of a general estimate for the global
The images in Figure 5c¢ and Figure 5f are the results gfosition which our autonomous robot can then navigate to.
performing background subtraction followed by a number of , L

image processing techniques to reduce noise and enhancehd-0cal object verification

regions of interest on two cameras that weluse The local phase is responsible for verifying whether an
object corresponds to the hypothesis formulated by theadjlob
gatimation. The initial step here is to navigate to the posit
grovided by the global position estimation. Once theres it i

Position Estimation. Taking the background subtracted im-
ages from the previous section as input, we have develop

a fast and simple position estimation for color blobs usin . ) .
plep g necessary to attempt to locate the desired object within the

method based on [6], which uses fuzzy logic and fuzzy Setﬁ'eld of view of the PTZ camera. Since the system knows
As we use a mobile robot to perform local verification of th% )

i . . o : g]e object’s name and color, it proceeds to load its shape
objects in question, it is enough to acquire a more gener ignatures. Using this information, it compares all segien
estimate for the position of said objects from the globa!fg ) 9 ' P

perspective. The information gathered from these imag?Shapes seen by the PTZ camera against the shape signatures

is the width of the color blobs in pixels. Specifically, this Rat correspond to the desired object. A candidate list is

. . . created and the candidate with the highest shape match
measure is determined using the Watershed segmentation )

. . . : IS chosen from the list. The system then centers on the
algorithm [3]. The position and orientation of the camera, . . . .
X o : : object and zooms in on it to perform local feature matching

as well as the maximum and minimum dimensions of the ™ . . .
. . using SURF. As SURF is rather computationally expensive
objects we are looking for are known. Therefore, we can . :
. . L compared to color segmentation, we aim to reduce the
determine a distance range approximation from the camera : o . Lo :
) : ; - number of times it is performed. This reduction is achieved
source to the objects in question. The range of this dlstan%e

approximation provides theore of our initial fuzzy set, y setting higher-than-required filters when matching shap

which is represented by a trapezoid. The sequence in Figur(eslgnatures in the candidate identification step. Theseditie

explains what happens at this point. Figure 6a displays gourse can be relaxed with ease at the sacrifice of running

i S RF more than necessary. After SURF is performed, if
trapezoid generated by the range approximation from the ) . :
- I ore thann features are matched against the images in

camera source. A trapezoid is created, seen in Figure

S . . . e knowledge base, the object currently being examined is
which is perpendicular to the range estimate trapezoids Thy onfirmed to be the desired one. If it is not confirmed, the list

accounts for the uncertainty of the bearing of the Objectiat was previously generated is accessed and the candidate

in the field Of view of the camera. Theupport of the w'%th the next highest shape probability is selected andhéurt
range trapezoid as well as the core and support angles Sl mined

the bearing uncertainty trapezoid were chosen empirically
The two trapezoids are encased in a bounding-box, see V. DISTRIBUTED IMPLEMENTATION

Figure 6c¢, simplifying the calculations for the impending The hardware we use are two fixed Logitech QuickCam

rapezoid inter ions. . ) :
trapezoid intersections Eusmn web-cams and a PeopleBot robot with a Pan Tilt

Following the creation of these bounding boxes for eac
object, the estimates are transformed into the global ¢ oom camera and a SICK LMS 200 laser. These hardware

ordinate frame by taking into account the location angomponents are integrated into the PEIS-Ecology middle-

orientation of the fixed camera. Upon the completion of thid/are Wh.'Ch enables casy and_ _eﬁ'c'ef‘t information sharing
step for each fixed camera, the resulting fuzzy sets can éth a high level of configurability. This makes the system

matched, as shown in Figure 6d. The intersection of the gxible and allows other components to be easily added or

sets signifies that both cameras perceive the same object.removed' The cameras are placed in the corner of the room

As well as the globak andy position of the object, the and in the middle of the room as can be seen in Figure 4. The

hueandsaturationcomponents of the color blobs are used irPEIS'.ECO!Ogy components we use and their purpose can be
matching the objects in view. The core and support for thegg on N F|gur_e 7 where the numpers on the edges indicate
are chosen to be wide enough to encapsulate all possit}_ e order of invocation of the various components for the
shades of the same color. ost & Fpund task. .

A significant method of increasing speed for the fuzzy in- By using the PEIS-Ecology, we were able to easily fuse
tersections is in the search algorithms to find the best mat(jl?ese componets together to achieve a network of modular

Instead of performing an exhaustive search by matchin antionalitie;. Indeed, the entire system p-rovid.es aésup
P g y g robot’ behaviour although the actual functionality (both i

1The further filtering process is described in more detail ih [5 terms of the necessary hardware and software components)

In: Proc. of the IROS-08 Workshop on Network Robot Systems. Nice, France, 2008.



=
E
O
®) ©
B O
=
=
C) @

Fig. 5: Image background subtraction and filtering as it is performed by the aneras (top and bottom rows). The first column contains
foreground images, the second column the result of color segmentétienthird column shows background subtraction.
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Fig. 6: Overview of the procedure for global position estiiora

6A that is seen is one of the requested objects. Finally, the
Local Feature Verificationcomponent provides SURF for

\ Background Subtractio¢ Local Feature Verification . .
A local feature verification.
| Segmentation Algorithn 68 5
d VI. EVALUATION
7—1_Navigatio For the evalutaion of the system, we chose a set of five

) o different, everyday household objects which could be seg-
Fig. 7: Network of PEIS components providing the LOSinented using the color segmentation algorithms and which
& Found functionality (numbers indicate the sequence qfgq enough features to be recognized using the SURF local
activation of the components). feature detector. We present here a preliminary evaluation

both global position estimation and of the complete system.

As well as having a set of pre-defined objects to use in the
is provided by the network. Th€amera Streancomponent experiments, we also chose a set of five positions in the
provides a stream from any camera in the environmengnvironment. The specific positions were chosen as they are
static or PTZ, to eitheBackground Subtractionr to Local all present in the field of view of both cameras as well as
Feature Verificationcomponents. The result is then eithemproviding a significant representation of the possibleisgal
used by theSegmentatioromponent to segment the imagelocations and heights that objects could be placed in the
or by Local Feature Verificationto verify that the object environment. In addition, we chose to allow for four diffete
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rotations of each object to determine whether the systeof background images to performing local feature verifica-
would be affected by the various viewpoints of the objectgjon. We randomly generated which object to find, at which
both in global position estimation and local verification.position to place it and at what orientation to face it forkeac
We felt that these positions and rotations would providéest. A breakdown of the results can be seen in Figure 9.
sufficient variety and challenging situations for the wgti  Here we highlight some important points about the results
and evaluation of our system. We performed two types dfom this data. The success rate of the system (i.e., antobjec
test on the system. The first tested the accuracy of the glold®ing correctly located and identified) was 70% (14 tests
position estimation for each object. The second tested theere successful out of 20). The average time for completion
overall performance of the system in a number of metrics.of a successful test was approximately 113 seconds. This
does not include the time taken for the system to perform
background subtraction, which requires an additional 30-1

A total of 20 tests were performed on the global positioseconds. Notice that the background subtraction and figeri
estimation system on each of the five objects chosen, placistep can be assumed to take constant time, and does not
each one of them in each position and rotation mentionetkpend on the number of objects in the scene. Indeed, it
earlier. Figure 8 shows the results for one of the positionss also easy to conceive a system in which this operation
The average and standard deviation of the estimated desanés constantly performed as a background process, in effect
from the actual position are shown. continuously updating the history of the background rather
than performing it on user demand.

A test of note is test number 11. It is the only successful
run which required the robot to rotate, and only one of
two which found candidates other than the true object to
perform local feature verification on. One should notice tha
by having an incorrect bearing to the position of the object

A. Position Estimation

5

;
4.5F i y
af b |

35

3

Distance (m)

25 1 can, in effect, quadruple the time taken to localize the abje

2 I Without this situation, the average time would have been
18f q below 100 seconds per run. Another important aspect to
1 3 € 3 f notice is that our results for false positives are perfect; 0
osf ) ¢ 3 - 7 false positives were identified by the system over the 14

successful runs.

Finally, we note also that the robot achieves an average
Fig. 8: Results for the five objects in one fixed position andinal distance from the object of slightly over one meter.
four different orientations. Indeed, this is the farthest navigable distance with respec

to the estimated object position as determined by the global

The results show that the position estimation of the objectgep, and no attempt is performed by the robot to achieve a
depends strongly on the specific shape of the objects. Notickvser distance once the object has been identified. This is
that the core of the trapezoid is calculated based on thmartially in contrast with the RoboCup@Home rules, which
width of the color blobs in pixels. As mentioned earlierstate that the robot should conclude the trial with a final
the position and orientation of the camera in as well adistance from the object of less than a meter. This final step
prior knowledge on the dimensions of the objects are takezan be clearly implemented in our system by inducing the
into account. Nonetheless, the distance range approximatirobot to proceed in the direction of the object’s bearinglunt
will inevitably be less accurate in the case of stronghan obstacle is encountered.
asymmetrical objects such as a book. This explains the highe )
distance from the real position of the estimate. Also, asynfz- RoPoCup@Home Scenario
metry accounts for greater variability between estimation Finally, we performed a limited set of runs of the
performed on different rotations. Conversely, objectshwitcomplete system in a scenario which is adherent to the
a rotation-invariant shape, such as the cup, lead to a mdrR@boCup@Home challenge: three objects were placed in the
accurate position estimation. environment, and the system was required to find them within

Overall, the average global position estimation alwayfive minutes.
lies between a few centimeters andl.5 meters from the = HERE WE SHOW THAT IT WORKS.
real position. Such estimates are acceptable in light of the
following local verification step, where the mobile robot VIl. DiscUsSION ANDCONCLUSIONS
reaches the estimated position to ascertain the validity of In this paper we have presented a distributed approach
the hypotheses. for identifying and localizing generic household objectsai
domestic setting. This specific problem is the focus of the
“Lost & Found” challenge in the RoboCup@Home league,

The second batch of tests involved running the systemnd presents a number of specific difficulties for current
through its entire operational cycle, i.e., from the acifjois  state-of-the art artificial vision technology. The domesti

. L I L .
Book Crispbread Cup Lightbulb Box Tea Box

B. Complete System
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Run No. | Success / Fail Time (s) | Distance (m) STJS?:id Rotations C:Bail (S)Tlme CBaiﬁ{.Z (S)Tlme
1 S 127 0.6150 1 0 12.6233 10.8753
2 S 101 0.6400 1 0 12.8739 10.4294
3 F — — — — 12.3244 12.7810
4 F — — — — 12.2046 12.6368
5 S 86 0.5920 1 0 14.5597 13.1417
6 S 108 0.7817 1 0 14.4238 13.2527
7 S 87 1.2125 1 0 14.1417 15.4604
8 S 100 0.7683 1 0 13.4639 13.5876
9 S 65 2.1557 1 0 13.6263 12.2606
10 F - - - - 14.9618 10.5240
11 S 389 2.0258 3 2 11.6141 13.1281
12 S 74 1.0881 1 0 10.9771 10.6008
13 S 99 0.8655 1 0 11.4084 10.6812
14 F - - - - 14.3229 13.9257
15 F - - - - 11.1393 11.6145
16 S 81 1.0358 1 0 13.4117 13.3598
17 S 112 0.8474 2 0 11.7652 11.7760
18 F - - - - 13.4033 14.7546
19 S 63 2.2008 1 0 13.0227 13.8944
20 S 92 0.8274 1 0 13.8907 13.3724

Mean 113.1429 1.1183 1.2667 0.1429 13.0079 12.6528
S.D. 81.3831 0.5755 0.5936 0.5345 1.2112 1.5027

Fig. 9: Results for the tests on the complete operationdeaykcthe system for single, randomly placed and rotatedabbje
in the test environment.

setting is typically cluttered and poorly structured usles
invasive measures are implemented to facilitate objecigec
nition. Household objects present attributes which are gen
erally diverse: some objects are feature-rich while in athe
color and/or shape represent the most meaningful attsbute
Throughout the development and testing of our system, we
have employed a range of ordinary objects such as those
shown in Figure 10. Moreover, a distinctive feature of the
Lost & Found task as it is defined in the RoboCup@Home
challenge is that the system must be easily taught the abject
it needs to find. This requirement is particularly significen
light of future applicability of such systems in real doniest
scenarios with real users.

The approach presented herein attempts to overcome thig. 10: An example of recognition of similar objects: a blue
above difficulties by combining the strengths of multiplecup is found (shape and color matching), although it is not
vision algorithms (color-, shape- and feature-based) galonthe specific blue cup specified by the user (feature matching
with the ability to dispose of coarse but fast global visiorfails).
in combination with accurate local verification on board a
robot. As shown in the experimental evaluation, the apgroac
cannot safeguard againts false positives/negatives. Howe
thanks to the fact that our system first determines th@ the example portrayed in Figure 10, the robot is in the
color that best matches the object currently being searchBiocess of verifying three candidates for a box of craclers,
before comparing its shape signature, the likelihood afefal Pox of tea bags and a blue cup (respectively, on the counter
positives iS greatly reduced (as not more than one ob]e@ﬂd on the I’Ight and left ends of the first Shelf) In this case,
signature at a time is compared against all seen objectéje blue cup does not correspond to the known blue cup (in
The probability of obtaining false negatives is also ratheihe framed inset), although the two cups are similar in color
small, since the system’s knowledge base contains imag8d shape. As a consequence, the local verification stage
signatures from a number of different view points. Thesgucceeds in matching color and shape, but fails due to local
features are demonstrated in the experiments, where in tf@ature mismatch. The result is, indeed, a first step towards
vast majority of cases the object is found without exploringhe possibility to find classes of objects in addition to sfiec
different candidates. objects.

It is interesting to notice that the system can offer partial Future work will evolve in two directions. First, we will
support for finding objects that asémilar to known objects. continue development of the PEIS-Home towards the aim
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of obtaining an increased coverage area of the environment
with fixed vision, thus increasing the precision of the globa
position estimates. This affords less reliance on the PTZ
zoom feature, as well as improving the estimate of the
bearing towards objects, which in turn decreases the time
needed by the robot to explore the location (avoiding the
need to pan, tilt and rotate). Also, more investigation can b
performed on the global position estimation and perhaps the
method in [6] can be fully implemented. In this context, we
also intend to investigate an alternative to the “stop-fmod”
shape matching algorithm currently implemented, in order t
allow the robot to continue navigating past candidates whic
do not pass the shape criteria. All these enhancements to the
system would increase the competitiveness of the system in
the context of the RoboCup@Home challenge.

Lastly, we intend to explore the possibility of leveraging
the partial object matching capability in the context of our
current work on perceptual anchoring [7]. On account of
the entire system being developed as a network of modu-
lar functionalities within the PEIS-Home (as described in
Section V), the integration of the individual components of
the Lost & Found feature can be employed in conjunction
with knowledge representation techniques for discovering
and maintaining symbolic information on household objects
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