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Abstract— This paper describes a realization of a network
robot system for autonomous object localization and identifica-
tion. Developing a “Lost & Found” capability, the use of which
can be envisaged in a wide range of applicative domains includ-
ing domestic assistive scenarios, is a challenging task for current
AI and robotic technology. Indeed, this task is currently one of
the core challenges within the RoboCup@Home competition.

A number of approaches for implementing a robust and
general Lost & Found functionality are feasible. In this paper
we present a solution which integrates state-of-the-art intelli-
gent software, robotic and sensory components in a distributed
network of cooperating modules. This article describes the de-
sign and implementation of the system, provides a preliminary
experimental evaluation and discusses the applicability of our
approach to the RoboCup@Home challenge.

I. I NTRODUCTION

This paper deals with autonomous object localization
and identification within the general setting of domestic
assistance, where objects are generic household items. Our
goal is to obtain a system that can provide a “Lost & Found”
capability which does not rely on ad-hoc characterisitcs of
the objects (e.g., special colored tags, or any other feature
that can be added to facilitate object identification).

The Lost & Found functionality has important applications
in a wide range of applicative domains, including domestic
assistive scenarios for elderly people affected by cognitive
decline (e.g., memory loss). Indeed, this task is currently
one of the core challenges within one of the robotic com-
munity’s principal benchmark, namely the RoboCup@Home
league [10] of the RoboCup competition [9]. The aim of
RoboCup@Home is to foster the development of useful
robotic applications that can assist humans in everyday life.
The participants of the Lost & Found challenge are required
to provide a system that will find a number of objects in an
environment without human interference. Each participantis
given some time to teach their system the set of previously
unknown household objects, after which the objects are
placed randomly in a mock-up domestic environment and
the robot is then required to locate them.

Implementing Lost & Found is a challenging task for
current AI and robotic technology. At least two general
approaches for implementing a robust and general Lost
& Found functionality are feasible, from a ‘super-robot’
approach in which one robotic platform performs the en-
tire task by itself leveraging its mobility to explore the

environment, to a purely distributed approach relying on
pervasive fixed vision within the environment. In this paper
we present a solution for autonomous object localization and
identification which attempts to combine the best of both
approaches. The solution is realized and deployed within a
network robot system and relies on the integration of several
software, robotic and sensory components distributed within
our smart home test environment. Our solution leverages the
availability of a particular network robot system consisting
in an ecology of Physically Embedded Intelligent Systems
(PEIS), the PEIS-Home [11]. The infrastructure underlying
this approach to networked robotics essentially consists in a
middleware for facilitating the exchange of information and
cooperation between heterogeneous PEIS. A PEIS can be any
software, robotic or sensory component offering a partiular
functionality or service.

With the availability and affordability of robots such as the
Pioneer [1] and the Roomba vacuum cleaner [4] and with the
wide use of cameras for surveillance and baby monitoring,
the idea of combining these technologies towards the aim
of developing a Lost & Found functionality is particularly
attractive: they are affordable, easy to setup and use, and
require little maintenance. If, for example, the robot was
specifically designed for vacuuming the floor but has access
to surveillance cameras in the house, it is now able to find
misplaced objects that the user instructs it to find. If the
camera happens to break, the robot can still perform its
designated task of strictly vacuuming.

In this article we describe our implementation of the Lost
& Found task using the PEIS middleware and a number of
state-of-the-art vision algorithms. The fundamental intuition
underlying our approach is to break the task down into a
global, fixed-vision based object localization stage followed
by a local verification of candidate objects on board a mobile
robot. The former phase provides a coarse but extremely
fast estimate of the location of the object(s) which are
to be found, while the latter refines this information to
assess whether the sought after object(s) match the initial
hypothesis. Also in this article we present a preliminary
experimental evaluation of the system, in which we measure
both the accuracy of the global estimation and the perfor-
mance of the entire system. Finally, we provide a discussion
on the advantages and disadvantages of the approach as well
as on the adecquacy of the implemented approach to the
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RoboCup@Home challenge.

II. SYSTEM OVERVIEW

As mentioned, there are a number of approaches to tackle
the Lost & Found problem. These solutions range from
informing the robot on a semantic level of the approximate
position of the object (e.g., in the kitchen) and having the
robot go there and confirm the fact that it is there. This
of course would require prior knowledge about the object
and where it was placed. Another approach would be to
simply have a robot wander around and analyze everything
it sees and attempt to match it to an object that it is
looking for. This approach is not only inefficient but also
very computationally expensive as feature-based comparison
to match each scene against a known image can be very
memory intensive. Random navigation in the environment
could take a very long time, even if a map of the environment
is known and the robot is able to keep track of where it has
been. A third alternative consists in using very good fixed
cameras that provide a high quality image covering the whole
environment. These cameras would potentially have to be
able to zoom on an object in order to verify features at a
local level. This camera feature would come at a high cost,
would still require a robot to fetch the object.

In a domestic scenario in which robots potentially are al-
ready deployed to address other needs, it makes sense to use
affordable, off-the-shelf technology which can complement
the robot’s functionality. The implementation of the Lost &
Found functionality described herein relies on the use of
inexpensive fixed video cameras found in any electronic store
and a mobile robot used for domestic cognitive assistance.
This, together with the fact that we use the PEIS-Ecology
middleware, makes the system configurable as well as ex-
pandable (e.g., by adding more cameras to extend the reach
of the Lost & Found functionality).

Given the task of locating objects in an environment, it is
first necessary to teach the robot an object and then of course
have it go locate it. A clean line may be drawn between
these two phases and as such we developed two different
modules; a learning module for data acquisition and a seach
module for finding objects. There is no overlap between the
two except for the fact that the learning module saves the
information into a knowledge base that the searching module
then accesses in order to perform its task. More about each
module is described in Sections III and IV respectively.

Our approach to object identification and localization
effectively decomposes the problem of seraching for objects
into two steps. The first step consists in finding potential
points of interest (candidates) with a fixed vision system able
to see the whole environment. The second step of the process
is to navigate to the candidate’s position and attempt to use
a Pan Tilt Zoom (PTZ) camera on the robot to verify that an
object is the one of interest. The process can be visualized
in Figure 1. In both steps, a combination of state-of-the-
art artificial vision algorithms are employed to assess the
presence within the scene of known objects.

Fig. 1: General flow diagram

The advantage of using a two-step approach is that since
the fixed vision system is able to see the whole environment,
we are able to quickly identify possible candidates and
roughly estimate their position thus eliminating the need for
a random walk of the robot. The rough position estimate is
acceptable for our task since we have a mobile robot platform
with a PTZ camera through which it can inspect candidate
objects more closely (as long as the robot is ‘in the area’
of the object). Furthermore, if some sort of a pre-processing
algorithm is applied, false positive candidates may be elim-
inated thus reducing the list of possible candidates, and asa
consequence the amount of physical seraching that must be
performed by the robot.

III. O BJECTACQUISITION

Object acquisition is a key component of the system. In
compliance to the RoboCup@Home regulations, we have
chosen to use the user as a teacher for our system. The
system provides a Graphical User Interface (GUI) to enter
the required data about each object. All information aquired
through this learning module is stored in a knowledge base.

All information gathered in this phase is used during the
search to identify the desired objects. In relation to the vision
algorithms employed for object identification (explained in
the following sections), we have chosen to capture the
following traits for each object:

• Object name: my favourite cup, pill box,
book, . . .

• Color: red, green, yellow, . . .
• Size: physical object dimensions (length, width and

height)
• Shape signature:64 normalised distance measurements

from the center of segmented object spanning 360◦

around the object (see Figure 2a)
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• Local features: features obtained using feature detector
(see Figure 2b)

(a) Visual representation of a
shape signature.

(b) Example of local features.
White crosses denote features.

Fig. 2: Shape signature and local features of an object.

The name of the object is used as a symbolic link within the
system to connect the data acquired and therefore also as a
key to represent the object. The color is of importance as it
acts as the initial filter for both the global components and
the mobile platform. The size, that is the physical dimensions
of the object, is used to provide a position estimate for each
color blob found in the fixed vision system (more on this
in Section IV-A). A number of shape signatures are saved
for each object describing the various viewpoints. These are
utilised when searching for the object, where the signatures
are used as a further detection filter for the identification
of the object. The local features are obtained using SURF
(Speeded Up Robust Features) [2], which builds on the same
principle as the established detector SIFT (Scale-Invariant
Feature Transform) [8], and is a relatively fast and robust
method used in local invariant feature detection. As for the
signatures, also features area detected at various viewpoints
of the object, representing how the object could be seen in the
environment. As this is the most computationally intensive
of the algorithms, we aim to limit its use by performing the
aforementioed filtering stages. More on the local verification
process is described in Section IV. Overall, the meaningful
information for an object can be acquired through the GUI
in three easy steps, the combined time requirement for which
does not exceed three minutes.

Color

1..* 1..*Local Feature 
Descriptor

Shape Signature

Size 

Object Name 

Fig. 3: Overview of object properties

The details of the learning module are outside the scope
of this paper, and the interested reader is referred to [5] for
further details.

IV. CO-OPERATIVE SEARCH

The search procedure may be called co-operative as it
combines fixed vision and mobile vision (PTZ camera) that
is located on a (mobile) robot platform. This is done, as
previously mentioned, using a two-step process in which the
global part of the system (fixed vision) is responsible for
finding candidates and localizing them in the environment
while the local part (robot) then navigates to these points
and furhter investigates these candidates. An overview of
this process can be seen in Figure 4.

Fig. 4: Overview of the two step process

A. Global position estimation

The first step, global position estimation, is required to
identify color blobs of interest and provide their position
estimate to the second step of local verification. Given a
number of objects to locate, this procedure analyzes the
scene in order to identify possible candidate color blobs that
mach the colors of the requested objects. This step is entirely
based on color segmentation. In order to limit the amount
potential matches, this step is provided with apre-processing
phase consisting of backround subtraction and noise filtering.
Following this, position estimationoccurs on the resulting
image, on which fuzzy matching is performed to obtain an
estimate of the position of each blob.

Pre-processing.Finding candidate blobs is a rather trivial
process as there are a number of approaches that exist. The
simplest and perhaps easiest is to use color segmentation.
Using this approach, color blobs found in the image become
points of interest. Notice though, relying on segmented blobs
alone may lead to numerous false positives; if we were
to look for a red box, everything red, including red TV
lights, red ornaments, red crayons, everything red would be
returned; see Figure 5b or Figure 5e.

Since the global part of the system provides position
estimates of all blobs found to the robot to further explore,
providing a list as concise as possible is desireable, as this
will minimize the time needed to investigate all candidate
locations. We achieve the desired minimized list by perform-
ing background subtraction. Such a technique is acceptable
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in the scope of the RoboCup@Home challenge as we are
able to extract objects from the environment to learn them
giving the system an opportunity to capture the background
image. Once the data acquisition for all objects is complete,
they are placed into the environment and remain static until
the completion of the task. These circumstances allow us
to capture foreground images (Figure 5a and Figure 5d)
and trust the resulting image until the test is complete.
The images in Figure 5c and Figure 5f are the results of
performing background subtraction followed by a number of
image processing techniques to reduce noise and enhance the
regions of interest on two cameras that we use1.

Position Estimation. Taking the background subtracted im-
ages from the previous section as input, we have developed
a fast and simple position estimation for color blobs using a
method based on [6], which uses fuzzy logic and fuzzy sets.
As we use a mobile robot to perform local verification of the
objects in question, it is enough to acquire a more general
estimate for the position of said objects from the global
perspective. The information gathered from these images
is the width of the color blobs in pixels. Specifically, this
measure is determined using the Watershed segmentation
algorithm [3]. The position and orientation of the camera
as well as the maximum and minimum dimensions of the
objects we are looking for are known. Therefore, we can
determine a distance range approximation from the camera
source to the objects in question. The range of this distance
approximation provides thecore of our initial fuzzy set,
which is represented by a trapezoid. The sequence in Figure 6
explains what happens at this point. Figure 6a displays the
trapezoid generated by the range approximation from the
camera source. A trapezoid is created, seen in Figure 6b,
which is perpendicular to the range estimate trapezoid. This
accounts for the uncertainty of the bearing of the object
in the field of view of the camera. Thesupport of the
range trapezoid as well as the core and support angles of
the bearing uncertainty trapezoid were chosen empirically.
The two trapezoids are encased in a bounding-box, see
Figure 6c, simplifying the calculations for the impending
trapezoid intersections.

Following the creation of these bounding boxes for each
object, the estimates are transformed into the global co-
ordinate frame by taking into account the location and
orientation of the fixed camera. Upon the completion of this
step for each fixed camera, the resulting fuzzy sets can be
matched, as shown in Figure 6d. The intersection of these
sets signifies that both cameras perceive the same object.

As well as the globalx and y position of the object, the
hueandsaturationcomponents of the color blobs are used in
matching the objects in view. The core and support for these
are chosen to be wide enough to encapsulate all possible
shades of the same color.

A significant method of increasing speed for the fuzzy in-
tersections is in the search algorithms to find the best match.
Instead of performing an exhaustive search by matching all

1The further filtering process is described in more detail in [5].

possible targets from all fixed camera sources to find the
maximal core overlap, we use a greedy search. This means
that we use the first match that we find which corresponds
to an intersection of all four trapezoids (range, bearing, hue
and saturation) over a certain threshold. This reduces the
search time significantly. This approach is acceptable for our
purposes as we are not so concerned about the exact location
of the object, but more of a general estimate for the global
position which our autonomous robot can then navigate to.

B. Local object verification

The local phase is responsible for verifying whether an
object corresponds to the hypothesis formulated by the global
estimation. The initial step here is to navigate to the position
provided by the global position estimation. Once there, it is
necessary to attempt to locate the desired object within the
field of view of the PTZ camera. Since the system knows
the object’s name and color, it proceeds to load its shape
signatures. Using this information, it compares all segmented
shapes seen by the PTZ camera against the shape signatures
that correspond to the desired object. A candidate list is
created and the candidate with the highest shape match
is chosen from the list. The system then centers on the
object and zooms in on it to perform local feature matching
using SURF. As SURF is rather computationally expensive
compared to color segmentation, we aim to reduce the
number of times it is performed. This reduction is achieved
by setting higher-than-required filters when matching shape
signatures in the candidate identification step. These filters of
course can be relaxed with ease at the sacrifice of running
SURF more than necessary. After SURF is performed, if
more thann features are matched against the images in
the knowledge base, the object currently being examined is
confirmed to be the desired one. If it is not confirmed, the list
that was previously generated is accessed and the candidate
with the next highest shape probability is selected and further
examined.

V. D ISTRIBUTED IMPLEMENTATION

The hardware we use are two fixed Logitech QuickCam
Fusion web-cams and a PeopleBot robot with a Pan Tilt
Zoom camera and a SICK LMS 200 laser. These hardware
components are integrated into the PEIS-Ecology middle-
ware which enables easy and efficient information sharing
with a high level of configurability. This makes the system
flexible and allows other components to be easily added or
removed. The cameras are placed in the corner of the room
and in the middle of the room as can be seen in Figure 4. The
PEIS-Ecology components we use and their purpose can be
seen in Figure 7, where the numbers on the edges indicate
the order of invocation of the various components for the
Lost & Found task.

By using the PEIS-Ecology, we were able to easily fuse
these componets together to achieve a network of modular
functionalities. Indeed, the entire system provides a ‘super-
robot’ behaviour although the actual functionality (both in
terms of the necessary hardware and software components)
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Image background subtraction and filtering as it is performed by the two cameras (top and bottom rows). The first column contains
foreground images, the second column the result of color segmentation. The third column shows background subtraction.
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Fig. 6: Overview of the procedure for global position estimation.
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Fig. 7: Network of PEIS components providing the Lost
& Found functionality (numbers indicate the sequence of
activation of the components).

is provided by the network. TheCamera Streamcomponent
provides a stream from any camera in the environment,
static or PTZ, to eitherBackground Subtractionor to Local
Feature Verificationcomponents. The result is then either
used by theSegmentationcomponent to segment the image
or by Local Feature Verificationto verify that the object

that is seen is one of the requested objects. Finally, the
Local Feature Verificationcomponent provides SURF for
local feature verification.

VI. EVALUATION

For the evalutaion of the system, we chose a set of five
different, everyday household objects which could be seg-
mented using the color segmentation algorithms and which
had enough features to be recognized using the SURF local
feature detector. We present here a preliminary evaluationof
both global position estimation and of the complete system.
As well as having a set of pre-defined objects to use in the
experiments, we also chose a set of five positions in the
environment. The specific positions were chosen as they are
all present in the field of view of both cameras as well as
providing a significant representation of the possible realistic
locations and heights that objects could be placed in the
environment. In addition, we chose to allow for four different
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rotations of each object to determine whether the system
would be affected by the various viewpoints of the objects,
both in global position estimation and local verification.
We felt that these positions and rotations would provide
sufficient variety and challenging situations for the testing
and evaluation of our system. We performed two types of
test on the system. The first tested the accuracy of the global
position estimation for each object. The second tested the
overall performance of the system in a number of metrics.

A. Position Estimation

A total of 20 tests were performed on the global position
estimation system on each of the five objects chosen, placing
each one of them in each position and rotation mentioned
earlier. Figure 8 shows the results for one of the positions.
The average and standard deviation of the estimated distances
from the actual position are shown.

Fig. 8: Results for the five objects in one fixed position and
four different orientations.

The results show that the position estimation of the objects
depends strongly on the specific shape of the objects. Notice
that the core of the trapezoid is calculated based on the
width of the color blobs in pixels. As mentioned earlier,
the position and orientation of the camera in as well as
prior knowledge on the dimensions of the objects are taken
into account. Nonetheless, the distance range approximation
will inevitably be less accurate in the case of strongly
asymmetrical objects such as a book. This explains the higher
distance from the real position of the estimate. Also, asym-
metry accounts for greater variability between estimations
performed on different rotations. Conversely, objects with
a rotation-invariant shape, such as the cup, lead to a more
accurate position estimation.

Overall, the average global position estimation always
lies between a few centimeters and∼1.5 meters from the
real position. Such estimates are acceptable in light of the
following local verification step, where the mobile robot
reaches the estimated position to ascertain the validity of
the hypotheses.

B. Complete System

The second batch of tests involved running the system
through its entire operational cycle, i.e., from the acquisition

of background images to performing local feature verifica-
tion. We randomly generated which object to find, at which
position to place it and at what orientation to face it for each
test. A breakdown of the results can be seen in Figure 9.

Here we highlight some important points about the results
from this data. The success rate of the system (i.e., an object
being correctly located and identified) was 70% (14 tests
were successful out of 20). The average time for completion
of a successful test was approximately 113 seconds. This
does not include the time taken for the system to perform
background subtraction, which requires an additional 10-15
seconds. Notice that the background subtraction and filtering
step can be assumed to take constant time, and does not
depend on the number of objects in the scene. Indeed, it
is also easy to conceive a system in which this operation
is constantly performed as a background process, in effect
continuously updating the history of the background rather
than performing it on user demand.

A test of note is test number 11. It is the only successful
run which required the robot to rotate, and only one of
two which found candidates other than the true object to
perform local feature verification on. One should notice that
by having an incorrect bearing to the position of the object
can, in effect, quadruple the time taken to localize the object.
Without this situation, the average time would have been
below 100 seconds per run. Another important aspect to
notice is that our results for false positives are perfect; 0
false positives were identified by the system over the 14
successful runs.

Finally, we note also that the robot achieves an average
final distance from the object of slightly over one meter.
Indeed, this is the farthest navigable distance with respect
to the estimated object position as determined by the global
step, and no attempt is performed by the robot to achieve a
closer distance once the object has been identified. This is
partially in contrast with the RoboCup@Home rules, which
state that the robot should conclude the trial with a final
distance from the object of less than a meter. This final step
can be clearly implemented in our system by inducing the
robot to proceed in the direction of the object’s bearing until
an obstacle is encountered.

C. RoboCup@Home Scenario

Finally, we performed a limited set of runs of the
complete system in a scenario which is adherent to the
RoboCup@Home challenge: three objects were placed in the
environment, and the system was required to find them within
five minutes.

HERE WE SHOW THAT IT WORKS.

VII. D ISCUSSION ANDCONCLUSIONS

In this paper we have presented a distributed approach
for identifying and localizing generic household objects in a
domestic setting. This specific problem is the focus of the
“Lost & Found” challenge in the RoboCup@Home league,
and presents a number of specific difficulties for current
state-of-the art artificial vision technology. The domestic
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Run No. Success / Fail Time (s) Distance (m) Times
SURFed

Rotations B.S. Time
Cam.1 (s)

B.S. Time
Cam.2 (s)

1 S 127 0.6150 1 0 12.6233 10.8753
2 S 101 0.6400 1 0 12.8739 10.4294
3 F – – – – 12.3244 12.7810
4 F – – – – 12.2046 12.6368
5 S 86 0.5920 1 0 14.5597 13.1417
6 S 108 0.7817 1 0 14.4238 13.2527
7 S 87 1.2125 1 0 14.1417 15.4604
8 S 100 0.7683 1 0 13.4639 13.5876
9 S 65 2.1557 1 0 13.6263 12.2606
10 F – – – – 14.9618 10.5240
11 S 389 2.0258 3 2 11.6141 13.1281
12 S 74 1.0881 1 0 10.9771 10.6008
13 S 99 0.8655 1 0 11.4084 10.6812
14 F – – – – 14.3229 13.9257
15 F – – – – 11.1393 11.6145
16 S 81 1.0358 1 0 13.4117 13.3598
17 S 112 0.8474 2 0 11.7652 11.7760
18 F – – – – 13.4033 14.7546
19 S 63 2.2008 1 0 13.0227 13.8944
20 S 92 0.8274 1 0 13.8907 13.3724

Mean 113.1429 1.1183 1.2667 0.1429 13.0079 12.6528
S.D. 81.3831 0.5755 0.5936 0.5345 1.2112 1.5027

Fig. 9: Results for the tests on the complete operational cycle of the system for single, randomly placed and rotated objects
in the test environment.

setting is typically cluttered and poorly structured unless
invasive measures are implemented to facilitate object recog-
nition. Household objects present attributes which are gen-
erally diverse: some objects are feature-rich while in others
color and/or shape represent the most meaningful attributes.
Throughout the development and testing of our system, we
have employed a range of ordinary objects such as those
shown in Figure 10. Moreover, a distinctive feature of the
Lost & Found task as it is defined in the RoboCup@Home
challenge is that the system must be easily taught the objects
it needs to find. This requirement is particularly significant in
light of future applicability of such systems in real domestic
scenarios with real users.

The approach presented herein attempts to overcome the
above difficulties by combining the strengths of multiple
vision algorithms (color-, shape- and feature-based) along
with the ability to dispose of coarse but fast global vision
in combination with accurate local verification on board a
robot. As shown in the experimental evaluation, the approach
cannot safeguard againts false positives/negatives. However,
thanks to the fact that our system first determines the
color that best matches the object currently being searched
before comparing its shape signature, the likelihood of false
positives is greatly reduced (as not more than one object
signature at a time is compared against all seen objects).
The probability of obtaining false negatives is also rather
small, since the system’s knowledge base contains image
signatures from a number of different view points. These
features are demonstrated in the experiments, where in the
vast majority of cases the object is found without exploring
different candidates.

It is interesting to notice that the system can offer partial
support for finding objects that aresimilar to known objects.

Fig. 10: An example of recognition of similar objects: a blue
cup is found (shape and color matching), although it is not
the specific blue cup specified by the user (feature matching
fails).

In the example portrayed in Figure 10, the robot is in the
process of verifying three candidates for a box of crackers,a
box of tea bags and a blue cup (respectively, on the counter
and on the right and left ends of the first shelf). In this case,
the blue cup does not correspond to the known blue cup (in
the framed inset), although the two cups are similar in color
and shape. As a consequence, the local verification stage
succeeds in matching color and shape, but fails due to local
feature mismatch. The result is, indeed, a first step towards
the possibility to find classes of objects in addition to specific
objects.

Future work will evolve in two directions. First, we will
continue development of the PEIS-Home towards the aim
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of obtaining an increased coverage area of the environment
with fixed vision, thus increasing the precision of the global
position estimates. This affords less reliance on the PTZ
zoom feature, as well as improving the estimate of the
bearing towards objects, which in turn decreases the time
needed by the robot to explore the location (avoiding the
need to pan, tilt and rotate). Also, more investigation can be
performed on the global position estimation and perhaps the
method in [6] can be fully implemented. In this context, we
also intend to investigate an alternative to the “stop-and-look”
shape matching algorithm currently implemented, in order to
allow the robot to continue navigating past candidates which
do not pass the shape criteria. All these enhancements to the
system would increase the competitiveness of the system in
the context of the RoboCup@Home challenge.

Lastly, we intend to explore the possibility of leveraging
the partial object matching capability in the context of our
current work on perceptual anchoring [7]. On account of
the entire system being developed as a network of modu-
lar functionalities within the PEIS-Home (as described in
Section V), the integration of the individual components of
the Lost & Found feature can be employed in conjunction
with knowledge representation techniques for discovering
and maintaining symbolic information on household objects.
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