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Abstract— Stigmergy is a mechanism that allows the coor-
dination of actions within the same agent or across different
agents by means of traces left in the environment. We propose a
stigmergetic approach to robot navigation in which a robot sets
values in a hexagonal grid of RFID tags buried under the floor.
This approach only requires minimal resources on the robot.
The RFID floor will eventually contain a distance map that
can guide the robot to a given goal (or set of goals) without the
use of any localization system. The same map can be used or
improved by other robots or by the same robot at later times.
We define algorithms for building the RFID-floor map and for
navigating on this map, we prove the convergence of the map
building algorithm, and we show an empirical validation of our
results using a small robot in a domestic environment.

I. INTRODUCTION

Point to point navigation is arguably the most fundamental
ability needed by any autonomous mobile platform. Typically
this is achieved by a combination of path planning and path
following, and requires that the robot has a map of the
environment and is able to reliably assess its own position
within this map [1]. The problems of map building and of
self-localization have been the subject of intensive study,
and many effective solutions are now available [2], [3].
These solutions typically rely on the use of data-rich sensors,
like laser range scanners or cameras, and on algorithms
which are often very demanding both in terms of memory
and computation. Despite the drop in price of sensors and
processing resources, considerations of cost, space, energy
and reliability still make the use of these solutions prohibitive
in mass-produced consumer robots.

A partial solution to this problem is to engineer the envi-
ronment by adding some active infrastructure. For instance,
the Roomba vacuum cleaning robots use beacons in the base
station to autonomously return to the charger, and some
systems use external cameras to provide self-localization to a
sensor-poor robot [4], [5]. These solutions, however, increase
the installation and maintenance costs of the system.

In nature, a mechanism is often seen by which relatively
simple animals can achieve complex behavior by exploiting
the environment as a resource for storage or communication
of information. This mechanism is called stigmergy.

Stigmergy is a mechanism of spontaneous, indirect
coordination between agents or actions, where the
trace left in the environment by an action stimu-
lates the performance of a subsequent action, by
the same or a different agent. [6]

The concept of stigmergy has been exploited in several
cooperative robotic systems, or “swarm” systems [7]. In
these, many simple robotic units apply simple individual,
local rules to achieve complex collective, global behavior.
The robots cooperate indirectly in a stigmergetic way by
leaving and reading information in the environment [8].

In this paper, we present a stigmergetic approach in which
the maps used for navigation are stored in the environment
itself—namely, in the information contained in a regular grid
of RFID tags on the floor. The navigation maps that we store
are distance maps to a given goal: each tag stores the distance
to the goal, in terms of the number of grid cells on the
shortest collision-free path from the tag to the goal.

We show the potential of this idea in two steps. In the first
step, we show that a robot equipped with an RFID tag reader
can exploit this map to navigate to the goal from any position
in the environment by simply following the gradient of the
information stored in the tags. Interestingly, the robot itself
does not need any internal storage or any self-localization
ability to do this; in particular, it does not need to possess
any additional sensing ability (except, if desired, for collision
detection). Even an extremely sensor-poor and processing-
poor robot can perform goal directed navigation in this way.

In the second step, we show that the map itself can be au-
tonomously built by the robot with a very simple algorithm,
without the need for any global or local position estimate,
and with minimalistic processing and memory requirements.
Our map building process is an anytime process: the map
is continuously updated over time, and building can be
suspended and resumed without saving any state in the robot.
It can also resumed by another robot, or performed by several
robots simultaneously, without any change to the algorithm.

In this paper, we describe the algorithms for exploration
(map building) and exploitation (target reaching), we give a
proof of the eventual convergence of the map building algo-
rithm, and show an empirical evaluation of both algorithms.

II. RELATED WORK

Many approaches have been proposed in the multi-agent
and multi-robot system literature based on the idea of
stigmergetic communication. These usually focus on the
achievement of emergent collective behavior, like foraging or
flocking [9], [7], [10]. Stigmergy has also been extensively
exploited to create swarms of artificial agents (ants) able to
solve optimization problems [11], but in that case a software
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Fig. 1. Layout of the environment used in our development, showing the
position of the RFID tags buried under the floor. The circles indicate the
two goal tags used in the experiments described in this paper.

rather than a physical medium is used. In our work, we
focus on the physical implementation of stigmergy for robot
navigation, using RFID tags as a medium.

The use of RFID tags in robot navigation is becoming
increasingly popular. In most cases, tags must be initialized
by writing in them some a-priori information, usually about
their global position [12], [13], [14], [15]. Our approach does
not require the storage or a-priori information in the tags,
nor does it rely on any global position information.

Some authors use RFID tags to realize stigmergetic com-
munication. Herianto et al [16] study the use of pheromone-
based potential fields for robot navigation. Mamei and Zam-
bonelli [17] use RFID tags distributed in the environments
to allow humans and robots to mark objects and places, and
to leave trails that lead to them. Ziparo et al [18] propose
an approach in which robots deploy RFID tags during
exploration and later use them for localization. These works
share the stigmergetic medium considered here, but they
address problems different from shortest path navigation.

O’Hara et al [19] use a pervasive network of devices in
the environment to compute a navigation graph that can
be exploited by a resource-poor robot. Interestingly, paths
can quickly adapt to changes in the environment in their
approach. The price to pay is the use of active devices, which
must be deployed in such a way that communication between
them is blocked by the same obstacles that block navigation.
By contrast, the RFID tags used in our approach are small,
cheap, do not need a internal power source, and are easily
embedded in the environment.

III. NAVIGATING ON AN RFID DISTANCE MAP

This section addresses the first step in our development:
if the RFID tags in the floor contain a distance map to a
goal, then we can use a simple gradient descent algorithm
to navigate to that goal.

A. Distance Maps

In this paper, we assume that a set of RFID tags are layed
down on the floor (or buried under it) in a regular hexagonal
grid. For example, Fig. 1 shows the tags in the environment
used in our experiments. The grid implicitly defines a tessel-
lation of the floor in hexagonal cells, corresponding to the

Fig. 2. Distance map computed offline by wavefront propagation.

Voronoi decomposition generated by the tag locations. This
grid can be seen as a graph (X, E) where the vertices X
are the tags, and the arcs E are defined by the 6-neighbor
relation between tags. The choice of a hexagonal layout is
motivated by its isotropic property: neighbors of any node in
a hexagon graph are located at an equal (geometric) distance,
which makes it easier to build a distance map.

We define our distance map to be a shortest path tree
(SPT) constructed out of this hexagonal graph. A SPT solves
the single-source shortest path problem, which is the problem
of finding the shortest path between a predefined root node
x0 ∈ X to all other nodes in X [20]. A SPT indirectly solves
this problem by annotating all nodes in X with the minimum
distance to x0. We denote by d(x) the annotated distance for
an arbitrary x ∈ X . Nodes that are unreachable from the root
node are annotated by ∞. In our setting, unreachable nodes
include tags which are underneath obstacles.

The SPT for a given hexagonal graph can be easily built
by standard graph search algorithms [21]. In particular, since
the weights in our case are all uniform, simple breadth-first
search can be used to produce the correct SPT: a search
wavefront is expanded from the goal node outwards, and
each node is marked with its distance to the goal node.
Similar path planning methods are well known in the mobile
robotics field [1], and they go under the names of wavefront
propagation [22] or distance transforms [23]. Although these
methods are usually applied to square grids, their extension
to hexagonal grids is straightforward. Fig. 2 shows the
distance map obtained by applying wavefront propagation to
the map in Fig 1, starting from a goal node in the bedroom.

Once a distance map has been generated, it can be stored
in the RFID tags in the floor by storing the value d(x) in
each tag x. It should be noted that this requires that a metric
map of the environment is available, and that the position
of each tag in this map is known. In Sec. IV we will show
how the distance map can be built directly on the RFID tags
while the robot navigates, with no prior metric information.

B. Gradient Descent Navigation

If a distance map is stored in the RFID tags on the floor,
a robot equipped with an RFID tag reader can reach the goal
tag from any location in the environment by simply following
the negative gradient of the values in the tags. Intuitively,
the robot would perform a “physical” gradient descent on
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Algorithm 1 GradientDescent()
Require: Robot with a single RFID tag reader in front
Ensure: Robot reaches the goal tag

1: OrientToGradient()
2: last dist ← ReadCurrentTag()
3: while last dist > 0 do
4: move forward one step
5: new dist ← ReadCurrentTag()
6: if (new dist > last dist) or facing an obstacle then
7: OrientToGradient()
8: end if
9: last dist ← ReadCurrentTag()

10: end while

the d(x) function until it finds the global minimum. By
construction of the distance map, the d(x) function has
exactly one local minimum, which is also the global one.

In practice, gradient descent can be realized in several
ways depending on the available hardware. If the robot
has a ring of RFID tag readers, it can read the values in
the tags around it at every step and continuously adapt its
heading to the direction of the steepest negative gradient. In
our experiments, however, we decided to rely on a simpler
hardware: a robot that has a single tag reader mounted at its
front, as shown in Fig. 3. In this case, the robot has to stop
and perform a full rotation in place in order to read the tags
around it and estimate the gradient. Gradient descent, then,
can be realized by first estimating the direction of the steepest
negative gradient, and then moving in that direction until a
raise in gradient is detected, at which point the gradient is
estimated again. Algorithm 1 formalizes this strategy.

The OrientToGradient step in the algorithm is per-
formed as follows. The robot makes a 360◦ rotation in place,
and it records its own heading when each tag enters and
leaves the reader’s range during the rotation. From this,
we can estimate the direction to each detected tag around
the robot. The direction of the gradient, then, is set to the
direction to the tag holding the lowest distance value. If
multiple tags all have the lowest value, we take their average
direction by summing the corresponding direction vectors.
The robot finally turns to the computed direction.

Algorithm 1 can be run on minimalistic robots. It requires
one memory cell to store last dist, plus a few cells to
record the directions and values of the neighboring cells in

Fig. 3. The minimalistic robot configuration assumed in our gradient
descent algorithm. A single RFID tag reader is mounted in the front, whose
range is shown in red. A full rotation is needed to compute the gradient.

OrientToGradient. The algorithm only assumes that the
robot is equipped with an RFID tag reader, a collision sensor
(e.g., bumpers) and an orientation sensor (e.g., odometry). No
ability to sense environmental features or to estimate absolute
location is assumed. If the robot had multiple RFID readers,
even the orientation sensor would not be needed.

C. Multiple Goal Points

Typical RFID tags have many writable fields, which can
be individually addressed. This means that one can use the
above method to store several distance maps in the RFID
grid, corresponding to several predefined goal points. A robot
placed on the floor can then navigate to any one of these goal
points by simply using the corresponding field index when
reading the contents of the RFID tags. The tags used in our
installation, for instance, provide 64 individually addressable
fields, but future tags are expected to have larger memories.

IV. AUTONOMOUS BUILDING OF DISTANCE MAPS

Having assessed the potentiality of a distance map stored
in an RFID floor, we now address the second goal of this
paper: to study how this distance map can be built on-line
and autonomously by a minimalistic robot. Our most notable
requirement is that map building should not rely on any prior
information; in particular, no information about the location
of the tags should be given, except that they are placed
on a regular hexagonal grid. We also require that it is not
necessary for the robot to maintain any position estimation,
neither to sense any information from the environment —
except for the contents of tags and collision detection.

On-line building of a distance map consists of two parts:
an exploration strategy, and an update strategy.

A. Exploration Strategy

For a tag to be assigned a distance value, it must eventually
get in the range of the tag reader. In fact, we show below
that for the map building to converge, the exploration strategy
must be complete in the sense that each tag-to-tag arc must be
traversed infinitely often as the building time goes to infinity.

In our experimental system, we implemented a simple
random walk strategy: (1) when no obstacle is detected,
move forward; (2) when an obstacle is detected, perform a
random rotation. This strategy is intuitively complete for all
physically accessible parts of the grid, and it has produced
complete coverage in all our experiments.

B. Update Strategy

As the environment is explored, the data of tags are to
be read as they enter the reader’s range. Depending on
fetched data, an update of tag data might be performed. The
update strategy should be such that tag data will eventually
constitute a distance map.

Our update strategy is described in Algorithm 2, which is
performed continuously during exploration (step 3). It can be
seen as a process where a stigmergetic trail is accumulated
in the environment. To determine what to store in each tag
as they enter the reader’s range, the algorithm maintains a
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Algorithm 2 BuildDistanceMap()
Require: All tags have value ∞ except for one that has

value 0 (origin)
Ensure: All tags eventually contain the distance to the origin

1: Xcurr ← ∅
2: distance counter ←∞
3: while Explore do
4: Xprev ← Xcurr

5: Xcurr ← TagsInRange() {from tag reader}
6: Xnew ← Xcurr −Xprev

7: with random x ∈ Xnew do
8: distance counter ← distance counter + 1
9: if distance counter > v(x) then

10: distance counter ← v(x)
11: else
12: WriteTag(x, distance counter)
13: end if
14: end with
15: end while

distance counter. This is an upper bound on the minimum
number of tags that must be traversed from the current
position in order to reach the goal tag. The counter is
incremented by one when a new tag is detected. Then the
counter is compared to the value stored in the current tag x,
denoted by v(x): if the counter is greater than v(x), then the
distance to goal is lower than the current upper bound in the
counter and the counter is updated; if the counter is lower
than v(x), then the value in the tag overestimates the distance
and the tag is updated. This is basically an adaptation of the
standard Bellman-Ford algorithm [20] to our specific case.
Eventually, the value v(x) in each tag x should converge to
the true distance value d(x).

A necessary condition for Algorithm 2 to converge is that
any two consecutively accessed tags are adjacent tags. If
this is not the case, it can be seen as a missed increment
of the distance counter, which will lead to divergence. This
translates into two practical necessary assumptions: (1) the
while loop (steps 4–14) must be run frequently enough
compared to the speed of motion of the robot; and (2) the
number of TagsInRange must be at least one (so the robot
never passes in between tags) and at most three (so all tags
read in one cycle are adjacent). In our formal proof below,
we show that the algorithm converges under the assumption
|TagsInRange| = 1. In the experiments reported in the
next section, we will empirically show that it also converges
when 1 ≤ |TagsInRange| ≤ 3.

Algorithm 2 is a life-long learning algorithm: it can be
run indefinitely during the lifetime of the robot — in fact,
since the permanent storage is not in the robot but in the
floor, it can be run during the lifetime of the floor. The robot
can still update the tags in the background while doing other
navigating tasks, possibly by exploiting the current RFID
floor map. This has two interesting consequences. First, a
robot can be placed on a partially computed floor map for
a given goal, and it will simply continue to refine that map.

Second, the map can adapt to expansions of the free space: if
an area that was previously inaccessible becomes accessible
(e.g., a piece of furniture is removed) then the values in
the floor tags will be decreased as needed to account for
the new topology. However, since the update strategy only
allows decreases of tag values, the algorithm cannot handle
the inclusion of new obstacles in the environment.

Another interesting property of Algorithm 2 is that it
allows for cooperative map building, i.e., multiple robots
can participate in a map build. There is no need for explicit
coordination or communication between the robots; the stig-
mergetic communication resulting from reading and writing
to tags is sufficient. Furthermore, there is no need for the
robots to be aware of each other, their number, or locations.

Finally, multiple maps can be built for multiple goals by
using different fields in the RFID tags. Interestingly, all the
maps can be built simultaneously by the same robot, by just
keeping a separate distance counter for each goal.

C. Convergence

We now prove that our map building algorithm eventually
converges to the true distance map. That is, given enough
time, the value v(x) stored in each RFID tag will be the
distance value d(v) defined in Sec. III above.

We prove convergence under the following assumptions:

a) The reader never “skips over” a tag; and
b) At each cycle, there is exactly one tag in range;
c) The exploration strategy is complete.

(1)

The first assumption means that the cycle time τ of the
algorithm and the maximum speed Vmax of the robot are
such that τVmax < ρ, where ρ is the minimum distance
between adjacent tags. This condition is easily satisfied.
The assumption also means that all tags are responding to
the reader. The second assumption means that the layout
of the RFID tags and the receptive field of the RFID tag
reader are such that the tags fields form a tessellation of the
space; if this is not the case, there might be positions at
which the robot does not read any tag (|TagsInRange| =
0), or it reads several tags (|TagsInRange| > 1). The
third assumption means that the exploration strategy will
eventually visit each arc between each pair of accessible
tags, and that it will do so infinitely often. The only idealistic
assumption is the second one: nonetheless, the experiments
reported in the next section empirically show that even if this
assumption is relaxed the algorithm still converges.

We define the error at time t of the built distance map by

Err(t) =
√

1
|Xt|

∑
x∈Xt

(vt(x)− d(x))2 (2)

where Xt denotes the set of tags explored up to time t, vt(x)
denotes the value stored in tag x at time t, and d(x) denotes
the distance of tag x from the goal cell defined in Sec. III.

The asymptotic convergence of the algorithm is stated by
the following theorem, proven in the Appendix.

Theorem 1: Under the assumptions in (1), there is a time
T such that, for any t > T , Err(t) = 0.
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Fig. 4. The PEIS Home physical test-bed. Left: the kitchen. Right: the
construction of the floor, showing the grid of RFID tags.

V. EXPERIMENTAL VALIDATION

We have performed a number experiments to empirically
validate our approach. We describe three suites of experi-
ments aimed at evaluating three different aspects.

A. Experimental Setup

In all experiments we used the same experimental setup.
The physical platform was the PEIS-Home, an apartment-
like test-bed facility that incorporates a living room, kitchen,
and a bedroom [24], [5]. The whole space is approximately
7 by 4 meters — see Fig. 1 above. In addition to common
household appliances, the PEIS-Home contains several less
usual objects, including 350 R/W RFID tags embedded
underneath the parquet floor. The tags are of type Tag-it HF-I
Plus and operate passively with a reader. The tags have been
placed out according to a hexagon grid, where adjacent tags
are spaced 26 cm apart — see Fig. 4.

The gradient descent and on-line map building algorithms
have been implemented on a Centibot platform [25], ex-
tended by mounting an RFID reader on the top of it, with
its antenna underneath the robot base and extending slightly
from the front — see Fig. 5. The size of the antenna was
such that between one and three tags were in range from
any position on the floor, given the tag density in our
environment. During all runs, translation speed was limited
to 80 mm/s, and rotational speed to 0.4 rad/s. The control
loop, including Algorithm 1 or 2, was run at 10 Hz.

B. Navigation on an Ideal Distance Map

The first suite of experiments was aimed at evaluating the
performance of the gradient descent navigation on a single
ideal distance map. The map used is the one shown in Fig. 2
above, i.e., the goal is located in the middle of the bedroom.

Fig. 5. The robot used throughout the experiments; a Centibot equipped
with a RFID tag reader. The antenna is visible, extending from the base.

Fig. 6. Multiple navigation runs on the same distance map from different
start locations. Open circles represent the starts; the filled circle is the goal.

Multiple Starts, Single Goal: In this experiment, we tested
the ability of the robot to reach the goal from different
starting locations throughout the environment. Since our
navigation solution does not require that the robot knows its
initial pose, we simply placed the robot at a starting location
and let it go. When the robot reached the goal, we manually
replaced it to the next starting position and released it again.
Fig. 6 shows the path of the robot in fifteen navigation
instances. At each run, the robot successfully reached the
goal tag. The slight misplacement of the ending point of the
trajectories is due to the fact that trajectories were recorded
from uncorrected odometric data.

Single Start, Single Goal: In this experiment, we tested
the performance of the robot by repeatedly performing the
same gradient descent navigation. We made ten runs using
the same distance map and obstacle set-up. The goal of this
experiment was to investigate repeatability and optimality.
For each run, we measured traveled distance, estimated by
odometry, and time. In all runs the robot successfully reached
the goal tag. The results reported in Table I show a good
degree of repeatability, since the minimum and maximum
distances only differ approximately one meter.

The optimal navigation distance was determined to be 6.5
meters. This figure was calculated by counting (by hand) the
minimum amount of tags between the start and goal tags,
taking the size of the robot into account. As it can be seen
in Table I, the mean navigation distance is 33% longer than
optimal. We conjecture that this is due to the use of an orient-
and-go strategy rather than a strategy where orientation is
corrected continuously. Our strategy was dictated by the
decision to use a robot with a single RFID tag reader.

C. On-line Building of a Distance Map

The second suite of experiments was aimed at evaluating
the map building algorithm under real execution conditions.
Two on-line builds were performed; one with the goal located

Property Min Mean Max Optimal
Distance (m) 8.04 8.63 9.20 6.5
Time (s) 231 249 274 –

TABLE I
RESULTS OF TEN GRADIENT DESCENT NAVIGATION RUNS.
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Fig. 7. Two on-line builds of distance maps. Colors indicate distance values: pure green is 0, pure red is 30. Arrows indicate the negative gradient direction
for visualization purposes. Unexplored tags are grey, broken or missing tags are black. The top row shows the building from a goal in the bedroom: before
the robot was released from the bedroom (left), right after the robot has left the bedroom (middle left), and when building ended after 20 hours (middle
right). The bottom row shows the building from a goal in the living room: after 1 hour (left), before the kitchen chairs were removed (middle left), and
when building ended after 20 hours (middle right). The rightmost column shows the ideal maps for the two cases, for comparison.

in the middle of the bedroom, and one with the goal in the
lower regions of the living room (see Fig. 1 above). The
rightmost column of Fig. 7 shows the ideal distance maps
for these goals, built offline.

The result of map building for the goal in the bedroom
are shown in Fig. 7 (top). Gradient arrows are only included
for visualization purposes, they are not stored in the tags.
The final map after t = 20 hours is rather close to the ideal
distance map. Some residual differences remain due to the
presence of broken tags (the black holes). Fig. 8 plots the
error function Err(t) (see equation (2) above) over t during
the building process. The figure also shows the average
difference between the direction of the gradient in the built
map and in the ideal map, computed cell by cell. The trend
of both curves suggest that convergence has occurred.

The bedroom experiment also tested the ability of our
algorithm to extend an existing map when the environment
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Fig. 8. Error functions during the build for the goal in the bedroom. Top:
error in the distance values. Bottom: error in the gradient directions. Around
time = 2 h the door of the bedroom was opened.

gets larger. In our run, the robot was initially enclosed in
the bedroom until the small map built there converged, at
t = 1.8 hours, as shown in the top-left map in Fig. 7. At
that moment, the door was open and the robot was allowed
to exit the bedroom. The top-middle map shows the distance
map right after (at t = 1.9 h): the stigmergetic trail left by
the robot is clearly visible. This event is reflected in the error
plot; there is a sudden rise at t = 2 h, due to the fact that the
Xt set in equation (2) quickly extended from the bedroom
to the full environment.

The result of the build with the goal in the living room is
shown in the lower part of Fig. 7. The map when building
ended is again very close to the ideal one. The error plots
in Fig. 9 suggest that convergence has occurred. The faster
convergence compared to the bedroom experiment can be
explained by the central location of the goal: the robot often
re-visits tags that are near the goal and have a value close to
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Fig. 9. Error functions during the build for the goal in the living room.
Top: error in the distance values. Bottom: error in the gradient directions.
Around time = 6 h the chairs in the kitchen were removed.
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Fig. 10. Path length from ten runs of gradient descent on the bedroom
goal at different stages of the build. Gradient descent on the corresponding
ideal map (built off-line) has been included for reference.

the correct one. In this experiment, we also tested the ability
of our algorithm to adapt an existing map to the removal of
objects. To show this, we allowed the building to go on for
six hours without any change in the environment, at which
point we removed the chairs under the kitchen table. The
second map in Fig. 7 shows the situation before the removal
of the chairs. Notice how the final map adapted to this
change. This is also detectable in Fig. 9; notice the sudden
rise at t = 6 h, and how the curve thereafter stabilizes.

D. Navigation on the Built Distance Map

Our final suite of experiments was aimed at testing the
performance of the gradient descent navigation system when
navigating on the maps built on-line, as opposed to the ideal
one. The goal was to show that navigation on the built maps
is possible, and to evaluate how the amount of convergence
affects the quality of navigation.

The experiment was conducted as follows: we used the
bedroom build described earlier, and made gradient descent
runs at different stages of the build. Navigation took place
under the same conditions described under Single Start,
Single Goal, and therefore the results shown in Table I can
be used as a baseline to determine the quality of navigation.
Navigation was performed on the map built after four, six,
eight, ten and twenty hours. For each map, ten navigation
runs were performed from the same starting position.

The results of the experiment are shown in Fig. 10 in
the form of a box plot for the path length. The bottom
line, middle line, and top line of a box corresponds to the
lower quartile, median, and the upper quartile, respectively.
The most extreme values within 1.5 times the interquartile
range are connected to the box by dashes lines. These results
show that the robot can successfully reach the goal also on a
partially built map, and that the navigation performance in-
creases as the map building time increases, and it eventually
approaches the one on the ideal map.

VI. CONCLUSIONS

To the best of our knowledge, this paper is the first one to
propose a stigmergetic approach to physical robot navigation
in which the robot creates and exploits a navigation map
which is stored in a passive environment.

Stigmergy brings a number of advantages. Since the map is
not stored in the robot but in the floor, the building algorithm
can be suspended and resumed without saving any state in
the robot, and it can be continued by a different robot. It can
also be carried out by several robots at the same time, which
cooperate implicitly through the values in the floor. A robot
does not need to be initialized or localized to navigate to the
goal associated to the map: as soon as is placed on the floor,
it will “descend” to that goal. Finally, the robot only needs
to have minimal computation and sensing resources.

A number of interesting challenges remain for future
research. Among these, we mention: how to deal with the
case of multiple robot that are not homogeneous; how to deal
with changes in the environment that reduce traversability;
and how to extend the approach to the case in which the tags
are not layed down in a regular grid.

A final remark concerns the applicability of the proposed
approach to practical problems. RFID tags have very low
cost, and deploying an RFID tag grid in an indoor environ-
ment is not complex since tags can easily be buried under
carpet of wooden floors. Some companies are already selling
or planning to sell RFID floors [26] and carpet tiles [27]. An
infrastructure of this type would allow reliable navigation of
both complex and very simple robots. The anytime property
of the map building algorithm can help to make map learning
effortless. For instance, a cleaning robot could run the map
building algorithm while doing its standard cleaning task. If
the robot operates for two hours a day, in a couple of weeks
it would have created workable map and could start to use it
for goal-directed navigation. The infrastructure would also be
easily adapted to new goals or to changes in the environment
layout, by storing a new map in a new field of the tags. These
elements suggest that our approach has a favorable balance
between costs and benefits for real applications.
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APPENDIX: PROOF OF THEOREM 1

Throughout this proof we implicitly rely on assumptions
(1) of Section IV-C above. First we state, without proof, the
following obvious properties.

Proposition 1: In Algorithm 2:
(a) The values vt(x) stored in each tag x are monotonically

non-increasing with time.
(b) At the end of any cycle, the distance counter has the

same value as the tag x under the reader.
The proof is in three steps: first, we show that the

algorithm is sound, that it, it never assigns values to tags
that underestimate the real distance. Then, we show that the
algorithm is complete, that is, if a tag x has distance d(x),
the algorithm will eventually assign that value to that tag.
Finally, we put these pieces together and show convergence.

Lemma 1 (Soundness): At the end of any cycle of Algo-
rithm 2, the value vt(x) stored in any tag x is greater or
equal to d(x).
Proof: By induction on the number of cycles. At start the

thesis is trivially implied by the required condition of the
algorithm. Consider now cycle n + 1. If the tag read is
the same as in the previous cycle, then Xnew = ∅ and the
thesis is true since it was true at cycle n and no tag writing
operation is performed at cycle n+1. Else, if Xnew 6= ∅ and
distance counter > vt(x), then again no tag writing
operation is performed and the thesis is true. Consider then
the case Tnew 6= ∅ and distance counter < vt(x). This
means that the robot has passed from one tag to a different
one: we denote these two tags by x′ and x, respectively.
Because of the assumption that tags are never skipped, x′

and x are adjacent. Hence, if d(x) denotes the real distance
value of tag x, then

d(x) ≤ d(x′) + 1 . (3)

By Proposition 1 (b), the value of the counter at the end of
cycle n was vt(x′), hence, by step 8, its current value is
vt(x′)+1. By step 12, this value has been stored into tag x,
that is, vt(x) = vt(x′) + 1. By the inductive hypothesis,

d(x′) ≤ vt(x′) . (4)

Putting together (3) and (4), we have d(x) ≤ vt(x′) + 1 =
vt(x). Since this holds for any x, we have proved our thesis.
�

Definition 1: An exploration strategy is complete if it
visits any arc infinitely often, that is, for any x1, x2 and N ,
it will eventually visit the arc (x1, x2) more than N times.

Lemma 2 (Completeness): If the exploration strategy is
complete, then each tag x will eventually be assigned a value
vt(x) which is less or equal to d(x).
Proof: By induction on the distance from the goal tag x0.
The thesis is trivially true for any tag that has zero distance,
since tag x0 is assigned the value 0 at start. Consider then any
tag x which is n + 1 steps from x0, that is, d(x) = n + 1.
Then, there must be a tag x′ which is adjacent to x such
that d(x′) = n. By inductive hypothesis, there is a time t1
such that vt1(x

′) ≤ n. By completeness of the exploration
strategy, there will be a time t2 ≥ t1 at which the arc
(x′, x) is traversed. By virtue of Proposition 1 (b), the value
of the counter before the arc is traversed will be vt2(x

′),
and by Proposition 1 (a) (monotonicity) vt2(x

′) ≤ n. After
the arc is traversed, then, the value of the counter will
be vt2(x

′) + 1, and because of steps 9 and 12, we have
vt2(x) ≤ vt2(x

′) + 1 ≤ n + 1 = d(x). Since this does not
depend on the choice of x, we have proved our thesis. �

We are now in a position to prove convergence.
Theorem 1: Under the assumptions in (1), there is a time

T such that, for any t > T , Err(t) = 0.
Proof: By Lemma 2, for each tag x there is a time tx so
that vtx(x) ≤ d(x), and by monotonicity (Proposition 1 (a))
vt(x) ≤ d(x) for any t ≥ tx. By Lemma 1, vt(x) cannot be
smaller than d(x), so it must be vt(x) = d(x) for any t ≥ tx.
Let T = maxx∈X tx, where X denotes the set of all tags in
the grid. Then, for any time t > T we have vt(x) = d(x)
for any x ∈ X . The thesis then follows immediately from
the definition of the Err(t) function in (2). �
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