A Self-Configuration Mechanism
for Software Components
Distributed in an Ecology of Robots

Marco GRITTI #, Alessandro SAFFIOTTI #
@ AASS Mobile Robotics Laboratory, University of Orebro, Sweden

Abstract.

Distributed heterogeneous robotic systems are often organized in component-
based software architectures. The strong added value of these systems comes from
their potential ability to dynamically self-configure the interactions of their compo-
nents, in order to adapt to new tasks and unforeseen situations. However, no satis-
factory solutions exist to the problem of automatic self-configuration. We propose
a self-configuration mechanism where a special component generates, establishes
and monitors the system configurations. We illustrate our approach on a distrib-
uted robotic system, and show an experiment in which the configuration component
dynamically changes the configuration in response to a component failure.

Introduction

Robotic technologies begin to be employed in relatively inexpensive devices and con-
sumer products, and they slowly start to appear in our homes, offices, and workshops.
Many observers believe that these devices will be networked and will be able to share
their information and coordinate their actions. This vision is becoming rather popular
in robotics, and it has been spelled out under different names, like network robot sys-
tems [1], intelligent spaces [8], artificial ecosystem [16], and PEIS-Ecology [14]. In this
paper, we generally refer to this vision as ecology of robots.

The software controlling these distributed robotic systems is usually constituted by
components spread over the various devices. The strong added value of this approach
comes from the potential of these systems to dynamically self-configure the component
interactions, both within and across devices. This dramatically increases flexibility and
adaptability, since the collaboration patterns are not fixed at design time but can change
according to the task that should be performed, or to the current operating conditions.
Much work has been done recently on the principles and techniques for automatic self-
configuration in autonomous robotics [9,12] as well as in other areas of computer science
like ambient intelligence [7], web services [13], or autonomic computing [17]. Despite
this, no satisfactory solution exist to the problem of automatic self-configuration.

In this paper we propose a reactive approach to self-configuration, in which a special
component dynamically creates, monitors and modifies configurations of a robot ecol-
ogy. This component accepts task specifications in the form of configuration templates.
This approach is inspired by ideas from the field of semantic web services and by the
heritage of reactive architectures in robotics. The key elements of our approach are:

Cite as: M. Gritti and A. Saffiotti. A Self-Configuration Mechanism for Software Components Distributed in an
Ecology of Robots. Proc of the 10th Int Conf on Intelligent Autonomous Systems (IAS). Baden-Baden, Germany,
2008.

e formal descriptions of the components in the ecology;

® configuration templates expressing tasks in the form of desired components and
desired component interactions; and

e mechanisms for discovery and matching of formal descriptions that allow to au-
tomatically find the components required by a given template.

In order to illustrate our approach, we apply it to a specific ecology of robots: the
PEIS-Ecology. The approach, however, should be applicable to other distributed robotic
platforms as well. The rest of this paper is organized as follows. In the next section
we state the system models and requirements of our self-configuration mechanism. In
Section 2 we give an overview of the constituents of this mechanism. In Section 3 we
explain in detail our template-based configuration component. In Section 4 we show an
experiment in which our component generates a configuration for a task of cooperative
navigation and dynamically changes such configuration in response to a failure.

1. Prerequisites of the System

The self-configuration mechanism proposed here ignores the internal logics of the soft-
ware components of the system. In other words, all components are internally abstracted
as black boxes. On the other hand, their external behavior must comply to the model of
asynchronous computation: components accept the data that are set into their input ports,
process them, and export the results by making them available on their output ports.

A uniform model of component interaction is also fixed: components are allowed
to interact only through connections of input ports to output ports. Such input-output
connections must be dynamic, in the sense that they are not to be decided at component
design time, but it must be possible to establish or release them at runtime. According
to this model, components exchange information in the form of flows of data on their
input-output connections. This model of interaction is ubiquitous within robotic systems,
e.g., in a sensor processing pipeline, or in a hierarchy of controllers. Such model also
appears in other domains, e.g. multi-media content streaming through the Internet.

A convenient way to make all system components comply to the same model of
interaction is to build them on top of a common middleware. In the present work, the
PEIs-kernel [3] was adopted as middleware, but the achieved results do not depend on
it. For the purposes of our self-configuration mechanism, it is sufficient that the mid-
dleware has an API that supports (1) asynchronous access to the component functions,
and (2) dynamic connections of input ports to output ports. These two requirements are
generally met by most of the existing middleware, being usually implemented through
mechanisms of subscription to asynchronous events and of event notification. The self-
configuration mechanism described below applies to any distributed system that satisfies
the above prerequisites. The PEIS-Ecology [14] belongs to this class of systems.

2. Self-Configuration

The overall behavior of a distributed system is determined by the concurrent execution
of the various components, which combine together their functionalities through specific
interactions. We intend such concurrent executions organized in system configurations.
A system configuration for a task ¢ is a pair < B, S >, where:

e B is the set of running components whose functionalities contribute to ¢;
e S is the set of all the connections established between the components in B.

Cite as: M. Gritti and A. Saffiotti. A Self-Configuration Mechanism for Software Components Distributed in an
Ecology of Robots. Proc of the 10th Int Conf on Intelligent Autonomous Systems (IAS). Baden-Baden, Germany,
2008.

2.1. An Architecture Pattern for Self-Configuration

The problem of configuring a robot ecology consists in determining what components
are eligible to execute in a common system-level task, and what are their suitable con-
nections. In the terms of the above definition, this means to determine the two sets B
and S opportune to solve a given task ¢. This computation can be done automatically,
according to the architecture and interaction schemes of Figure 1 and Figure 2.

Figure 1. System architecture for self-configuration. Figure 2. The self-configuration process.

As illustrated, repositories of component descriptions D should be deployed in the
system. Special init-components should run on the same sites of the repositories, which
fetch and propagate the descriptions. Other special conf-components (or configurators)
should exist, capable of computing the configurations opportune to achieve the various
system-level tasks using the information stored in the component descriptions.

2.2. Formal Component Descriptions

The formal component descriptions adopted here are called component profiles. These
describe the components in both their functional and non-functional aspects.

The functional part of a profile lists the signals accepted in input and the signals
produced in output. These are in one-to-one correspondence respectively with the com-
ponent input and output ports. As an example, consider the advertisements in Figure 3
and in Figure 4. These publish the profiles of a navigation control component for mobile
robots and of a motor drive component. The navigation control component has three in-
put signals (named sonar, position, and localize) and produces one output sig-
nal (named set .velocity). The motor drive component accepts just one input signal
and has no output signals. All signals are typed.

The non-functional part of a component profile includes the component type, and
the list of component properties. Component types classify components according to
the functionality they provide. Component properties declare additional features of the
components, which allow to further specialize their description. For example, the type
of the navigation component is NavigationControl; the type of the motor drive
is MotorDrive. The motor drive has also a property, with type Support and value
ASTRID. This property specifies the real object that carries the actuator to which such
component is a bare interface. In this case such object is Astrid, a mobile robot.

Component profiles are stored into manifest files referred to as advertisements. We
deploy the advertisements on the same sites of the component instances. This is a typical
solution for allowing automatic component discovery in peer-to-peer frameworks.

Cite as: M. Gritti and A. Saffiotti. A Self-Configuration Mechanism for Software Components Distributed in an
Ecology of Robots. Proc of the 10th Int Conf on Intelligent Autonomous Systems (IAS). Baden-Baden, Germany,
2008.

<component>NavigationControl</component:>

<compName>"thinkingcap™</compNamne >

<componentDescriptions>
"A fuzzy logic behavior-based mobile

robot control architecture.™

</componentDescription>

<parameter>
<paramName>"contr.b-goal™</paramName>
<DataType>B-Goal</DataType>

</parameter>

<signallnput>
<slglnName>"sonar"</siglnName>
<DataType>»DistanceArray</DataType>

</signallnput>

<signallnput>
<sigInName>"position"</sigInName:>
<DataType>EncoderReading</DataType>

</signallnput>

<signallnput>
<sigInName>"localize"</sigInName>
<DataType>»PlanarPose2D</DataType>

</signallnput>

<signalOutput>
<sigOutName>"set.velocity"</sigOutName>
<DataType>PlanarVel</DataType>

</signalOutput>

<component>MotorDrive</components>
<compName>"driveastrid"</compName:
<componentDescription>
"The drive controller of Astrid.”
</componentDescription>
<property>
<PropType>Support</PropType>
<propvalue>"ASTRID"</propValue:>
</property>
<signallnput>
<glgInName>"setpoint”</sigInName>
<DataType>PlanarVel</DataType>
</signallnput>

Figure 4. Advertisement of the drive on Astrid.

<component>PositionSensor</component>
<compMNane>"persontracker”</complame >
<componentDescription>
"A people detection and tracking
system using sterec wvision.™
</componentDescription>
<gignalOutput>
<glgOutName>"person.pos™</sigOutName>
<DataType>FPlanarPose2D</DataType>

</signalOutputs>

Figure 3. Advertisement of a navigation component. ~ Figure 5. Advertisement of a tracker component.

2.3. Use of Component Descriptions

In our mechanism for automatic self-configuration, the component profiles are processed
by the special conf-components for (1) selection of the components eligible to enter a
configuration, and (2) check of mutual compatibility between components supposed to
interact. These computations are done in compliance with the following rules:

Component selection rule: a component of profile p, is eligible to enter a system
configuration if and only if this configuration needs a component b such that (i) the type
of p matches the type of b, and (ii) for all properties ¥ of p, if b has a property r;? such
that the type of 7’ matches the type of 7‘?, then their values are equal. In such case, it is
also said that p is compatible with b.

Component mutual compatibility rule: given a set of components with profiles P,
of which one, named pSi, represents a sink of data, and all the others, grouped in the
set P%° = P\ {p*'}, represent sources of data, the sink profile is mutually compatible
against all of its sources if and only if for each input i*? of the sink there is at least one
output 0°° among the outputs of the sources such that 0°° matches i*’.

All the above matchings are purely syntactic: if the types of the compared quantities
are equal, then the quantities match, otherwise they do not match.

2.4. The Four Acts of Self-Configuration

As depicted in Figure 2, having received a system-level task specification, the conf-
component broadcasts queries (Act 1) that ask for components suitable for such task;
then it collects relevant component descriptions received in reply from the various init-
components (Act 2). These two acts constitute the discovery phase of the self-configura-
tion process. After a query timeout, the conf-component evaluates the feasibility of the
desired task given the descriptions it has received (Act 3). This is the composition phase.

Cite as: M. Gritti and A. Saffiotti. A Self-Configuration Mechanism for Software Components Distributed in an
Ecology of Robots. Proc of the 10th Int Conf on Intelligent Autonomous Systems (IAS). Baden-Baden, Germany,
2008.

In this phase the conf-component searches among all possible configurations featuring
(some of) the discovered components for one that can solve the assigned task. If such a
configuration is found, the conf-component deploys it into the system (Act 4). This is
done by (i) activating all the components that have been selected, and (ii) establishing all
the connections that have been computed.

3. The Reactive Configuration Component

The conf-components are the key elements of our self-configuration mechanism. We now
describe the implementation of one sort of conf-component: the reactive configurator.
Upon receiving in input a system-level task specification, the reactive configurator is able
to configure the system in a way appropriate to achieve such task, and to re-configure it
whenever a failure is declared by some component of the deployed configuration.

3.1. Template Configurations as System-Level Task Specifications

We specity a task by listing what types of components interact, what are the properties
that those components must fulfill to be able to correctly perform their subtask, and
finally what are the interactions according to which it is meaningful for these components
to exchange data. Such kind of specification is a template configuration.

For example, consider the task of playing the radio in a given room. A template
configuration for it could list as types of interacting components a radio tuner, and (at
least) one speaker. The speaker component must comply with the property to have place
in the desired room. The desired interaction is that the tuner should feed the speaker, and
not vice versa. As another example, consider the task of navigating a robot in the free
space. Its template configuration could list a position sensor (possibly a virtual sensor),
a drive for the motors of the robot, and a navigation control component. It is necessary
that the motor drive has the robot that should move as its support. If the position sensor
is proprioceptive, it must have the same robot as its support. The desired interactions
are the following: the position sensor should feed the navigation control component; the
navigation control component, in turn, should feed the motor drive.

Place Support Support

Figure 6. The template configurations for playing the radio (left) and for navigating a robot (right).

Figure 6 shows two possible template configurations for those tasks. The properties
of the components become task-dependent parameters of the template configurations.
For instance, the template of Figure 6 (right) can be parameterized by setting “support
= ASTRID”. Fully parameterized template configurations ¢ are the input of the reactive
configurator, whose functioning is illustrated in the following.

3.2. The Algorithm for Configuration Generation

The reactive configurator performs component discovery in a trivial way. Having re-
ceived a system-level task specification in the form of a parameterized template config-
uration ¢, it broadcasts a generic query for discovering all the components of the sys-

Cite as: M. Gritti and A. Saffiotti. A Self-Configuration Mechanism for Software Components Distributed in an
Ecology of Robots. Proc of the 10th Int Conf on Intelligent Autonomous Systems (IAS). Baden-Baden, Germany,
2008.

tem. The set P of all received component profiles identifies the set of all components
currently available. At the beginning of the composition phase, the reactive configurator
determines the set F' C P of profiles of the components which are eligible to enter a
configuration for ¢. This is done applying the component selection rule of Section 2.3 to
all the profiles in P, against all the components B? listed in the template . More pre-
cisely, the configurator computes a partition F'! ... F™ of F such that for all b; € BY,
F contains all and only those profiles that are compatible with b;.

Consider for example the task of navigating ASTRID. If the configurator receives
the advertisement of a motor drive with “support = PTPPI”, this will be immediately
discarded applying the selection rule, because this component has a support property dif-
ferent from the one that is required. The selection rule will also make the configurator dis-
card all the advertisements of the components whose types are not PositionSensor,
MotorDrive, or NavigationControl. Discarding components because of type or
property mismatch is a preliminary heuristic cut of the configuration search space.

Algorithm 1 CONSEARCH(t, F%, ..., F") Function 2 EXPAND(G, ¢, FL ... F™)

Require: Template ¢, and n profile sets. Require: Config. &; t, and F* as before.
En~sure: A conﬁgtlratlon cor FATIL. Ensure: All one-level expansions of ¢.
¢o — 0,C — {éo} X — 0
Wh}leC#me U<—{bi€Bt|Vp€FiiSp€P6}
¢ « first(C) f
. 2 | o orall b, € U do
if | P¢| = | B?| then ;
N for allp € F" do
return c . e ~
else if local-compatibility(p, ¢, t) then
X «— EXPAND(G, t, F,... F™) X XU {eop}
C —rest(C)UX end if
end if end for
end while end for
return FAIL return X
Given the profiles of the eligible components, partitioned in F!,..., F", the con-

figurator searches in the space of all their possible configurations for one that complies
to the assigned template ¢. A state in this search problem is an internal representation ¢
of a partial configuration, where just some of the components in B are associated to
some profiles of I, and just some of the interactions listed in ¢ are associated to groups
of input-output connections. The only available action of this search problem is to add
to a partial configuration ¢ a new association between a profile p € F' and a template
component b € B! that is compatible with it. This is denoted by the operation @, de-
fined among internal representations of configurations and component profiles. Algo-
rithm 1 is the search algorithm implemented in the reactive configurator. It accepts in
input a parameterized template configuration ¢, and the various F'!, ..., F™. Algorithm 1
implements a sort of uninformed search, where exploration is done expanding internal
representations ¢ of partial configurations, grouped in a working set C'.

Function 2 computes the set X of expansions of a partial configuration ¢. The fun-
ction computes the set U of components of ¢ for which no compatible profile is already
in the set P¢ of the profiles already in ¢. For all the components b; € U, this function
tries to expand ¢ with any of the profiles p € F", i.e. the ones compatible with b;. Each

Cite as: M. Gritti and A. Saffiotti. A Self-Configuration Mechanism for Software Components Distributed in an
Ecology of Robots. Proc of the 10th Int Conf on Intelligent Autonomous Systems (IAS). Baden-Baden, Germany,
2008.

expanded configuration is obtained adding to ¢ a profile p through the operator . The
expansion step is done in compliance with the following rule:

Local compatibility rule: a profile p € F can be associated to a component b; €
U if and only if (i) if all the components b/ € B* which are feeders of b; are already
associated in P¢, then p must be mutually compatible against all the profiles that are
associated to all the b/; and (ii) for all the components b!" € B* which are fed by b;,
if some b’ has all its other feeders already associated in P¢, then the profile associated
to b" must be mutually compatible against the set of profiles constituted by p plus the
profiles associated to all the other feeders of b*".

Mutual compatibility between component profiles is always tested according to the
mutual compatibility rule of Section 2.3. When the mutual compatibility test fails, the
local compatibility fails too, and the new profile is not added to the partial configura-
tion. Otherwise, all the input-output connections between the tested profiles are added to
the partial configuration. The information contained in the template configurations about
what components have direct interactions with what other components permits another
important heuristic cut of the search space. Without such information, the local com-
patibility test would explode in complexity, because at every expansion step the search
algorithm would have to check the compatibility of the newly introduced profile against
all the subsets of P¢, in all their possible interaction patterns.

3.3. Monitoring and Reconfiguration

Once a configuration has been generated and deployed, the configurator component starts
to monitor the configuration execution. A configurator can monitor clean failures of the
deployed components by connecting to a special output FAIL that all the components
are supposed to export. Whenever a failure event is signaled by a component, the config-
urator erases its profile from the set of the discovered profiles and re-triggers the search
algorithm to look for another system configuration that can solve the original task. This
monitoring phase is intrinsically reactive.

4. Experimental Run

The experiment that follows was performed on a real PE1S-Ecology platform [3,14].
4.1. Setup of the Experiment

The experiment takes place in the PEIS-Home: a reconstruction of a small apartment of
about 25 m?. The living room of the PEIS-Home is under the field of view of a 3D stereo
camera. A PeopleBot named Astrid (Figure 8) is present in the environment.

The assigned task is moving Astrid to the bedroom. This is specified through
the parameterized template configuration of Figure 7. Five components are listed
in the template. Their types are: SonarArray, Encoder, PositionSensor,
NavigationControl, and MotorDrive. For each component, the template lists its
actual parameters', the required properties, and the interactions in which it takes part.
The navigation control component is given one parameter of type B-Goal. For all the

'In our complete framework, besides the input signals, components can also accept operational parameters,
which are for setting or tuning their running mode. This increases the components flexibility of use.

Cite as: M. Gritti and A. Saffiotti. A Self-Configuration Mechanism for Software Components Distributed in an
Ecology of Robots. Proc of the 10th Int Conf on Intelligent Autonomous Systems (IAS). Baden-Baden, Germany,
2008.

*xx components *x*x*

("Comp; #SonarArray" () (("Objects; #Support" "ASTRID")) (0))
("Comp; #Encoder" () (("Objects; #Support" "ASTRID")) (1))
("Comp; #PositionSensor" () (("Objects; #Support" "ASTRID")) (2))
("Comp; #NavigationControl" (("Cpt; #B-Goal" " (AT BEDROOM)")) () (0 1 2 3))
("Comp; #MotorDrive" () (("Objects; #Support" "ASTRID")) (3))

*%% interactions *x*x*

(0 3) (1 3) ; sonar->control / encoder->control
(2 3) (3 4) ; position->control / control->drive

Figure 7. Parameterized template configuration for the navigation task of the experiment.

other components the Support property is specified. If present in their advertisements,
this property must be equal to ASTRID. The interactions meaningful in the task are
listed at the end of the template: component number 3 (the NavigationControl)
should be fed by all other components, and it should feed component number 4 (the
MotorDrive). This template is an extension of the one in Figure 6 (right).

The sonar array, encoder, and drive are part of the equipment of Astrid. They are all
grounded on the same software. This is based on Player [6]. The advertisement of the mo-
tor drive was shown in Figure 4. The other two are similar: all expose a Support prop-
erty with value ASTRID. The advertisement of the navigation component was shown in
Figure 3. The corresponding robot navigation software, called Thinking Cap [15], ac-
cepts high-level navigation goals in the form of logical propositions, called behavioral
goals (or B-Goals). Two distinct localization systems are available for the role of position
sensor. One of them is the person tracker advertised in Figure 5. The person tracker is
a people detection and tracking system [10] that uses the 3D camera of the PEIS-Home.
This system is also able to track Astrid. The other position sensor is a factitious compo-
nent that just transforms the value of the odometry from the Player on Astrid into the ab-
solute coordinates of the PEIS-Home. From the functional point of view the two position
sensors are equivalent: they both issue a single output of type PlanarPose2D.

4.2. Execution of the Experiment

Configuration: After receiving the template of Figure 7, the reactive configurator
queries the ecology, and receives the advertisements of all the components available at
the moment, among which are the six components discussed above. These six compo-
nents are the only eligible to enter the configuration. The robot sonars, encoder, and drive
match the types and properties required by the template. The Thinking Cap is advertised
as a NavigationControl component, precisely as needed. The person tracker and
the absolute odometry are PositionSensor. They do not expose a Support prop-
erty, hence this is not checked for them. During configuration search, all template com-
ponents but the position sensor have just one compatible profile. In the mutual compat-
ibility tests following the various expansions of the search algorithm, the drive compo-
nent is verified to be mutually compatible with the Thinking Cap. In turn, the Thinking
Cap is verified to be mutually compatible with the set of components constituted by the
sonars, the encoders, and the person tracker. The generated configuration features the
person tracker, which was the first position sensor to be tested.

Execution: The generated configuration is deployed. The snapshot of Figure 9 was
taken with a system inspection tool just after the deployment was complete. Apart from

Cite as: M. Gritti and A. Saffiotti. A Self-Configuration Mechanism for Software Components Distributed in an
Ecology of Robots. Proc of the 10th Int Conf on Intelligent Autonomous Systems (IAS). Baden-Baden, Germany,
2008.

PersonTracker@sand65

person.pos

ThinkingCap @sand68

osition.odopos
set.velocity sonar.pose IFAIL
sonar.range

FAIL (Player@astrid
Configurator @sand61

Figure 8. Astrid. Figure 9. The deployed configuration. Figure 10. Tracker view.

the connections between the task-related components, the snapshot shows also that the
reactive configurator has connected itself to all the needed failure signals. After activating
all the components and establishing all the connections, the configurator injects the B-
Goal into the Thinking Cap. The Thinking Cap starts sending velocity setpoints to the
drive of Astrid. Astrid starts moving. The person tracker extracts the visual signature of
Astrid from the images received from the stereo camera (Figure 10), and transmits to the
Thinking Cap the absolute position of Astrid in global coordinates. The navigation of
Astrid proceeds smoothly until Astrid exits the field of view of the stereo camera. When
that happens, the person tracker looses the robot, and raises its FAIL signal.

Reconfiguration: Upon receiving the failure signal, the configurator turns off the
person tracker and removes its profile from the set of discovered components. Then it
dismantles the deployed configuration. Astrid stops, because its drive is not receiving any
more the velocity setpoint updates. The configurator starts from scratch another search
for a new configuration. During the new configuration search, the configurator builds up
the same associations as before, except for the position sensor, which is now associated
to the absolute odometry component. As soon as the new subscriptions are deployed,
Astrid resumes its course toward the bedroom.

5. Conclusions

The main contribution of this paper is to propose a task-driven, reactive approach to self-
configuration for the software of distributed robot systems. We have shown the applica-
bility of this approach to the PEIS-Ecology, but this approach should be applicable to any
type of distributed robot system. The most notable benefit of our approach is to make the
system more flexible and adaptive, by giving it the ability to automatically self-configure
for a given task, and to automatically re-configure in case of failures.

Although other approaches have been proposed in literature for formal description
and discovery of software components in distributed robotic systems [2,4,5,11], very few
works exist that deal with the automatic, run-time composition of these components for
a given task [9,12]. Contrary to the latter works, the approach presented in this paper
is reactive. Two aspects of reactivity of our approach are the locality of configuration
search in the neighborhood defined by the template, and the immediate return of the first
solution found. As consequence, our approach can scale well with the size of the robot

Cite as: M. Gritti and A. Saffiotti. A Self-Configuration Mechanism for Software Components Distributed in an
Ecology of Robots. Proc of the 10th Int Conf on Intelligent Autonomous Systems (IAS). Baden-Baden, Germany,
2008.

ecology, but it cannot guarantee optimality of the solution. Global planning approaches
can overcome this problem, but have difficulties to scale-up. In the future, we intend to
explore a hybrid global/local approach taking inspiration from distributed planning.

Our approach is inspired by ideas coming from the field of semantic web services,
e.g. OWL-S. It should be emphasized, however, that one could not directly abstract com-
ponents of a robot ecology as services of OWL-S. Web Services are similar to method
invocations: they accept input parameters and issue a return value after a certain time. By
contrast, typical robotic components are continuous processes that process and produce
continuous flows of data. An important contribution of our work is to have devised a
novel framework of formal descriptions tailored for components typical of robot ecolo-
gies and of distributed robotic systems of similar nature.

Acknowledgments

This work has been supported by the Swedish Research Council (Vetenskapsradet), and
by ETRI (Electronics and Telecommunications Research Institute, Korea). Our thanks to
Mathias Broxvall for valuable discussions and technical help.

References

[1] T. Akimoto and N. Hagita. Introduction to a network robot system. In Proceedings of the 2006 Interna-
tional Symposium on Intelligent Signal Processing and Communications, Tottori, Japan, 2006.
[2] F. Amigoni and M. Arrigoni Neri. An application of ontology technologies to robotic agents. In Pro-
ceedings of the International Conference on Intelligent Agent Technology, Compiegne, France, 2005.
[3] M. Broxvall. A middleware for ecologies of robotic devices. In Proceedings of the First International
Conference on Robot Communication and Coordination, Athens, Greece, 2007.
[4] L.Chaimowicz, A. Cowley, V. Sabella, and C. J. Taylor. ROCI: A distributed framework for multi-robot
perception and control. In Proceedings of IROS 2003, Las Vegas, Nevada, USA, 2003.
[5] . Fritsch, M. Kleinehagenbrock, A. Haasch, S. Wrede, and G. Sagerer. A flexible infrastructure for the
development of a robot companion with extensible HRI-capabilities. In ICRA’05, Barcelona, 2005.
[6] B. Gerkey, R. Vaughan, K. Sty, A. Howard, G. Sukhatme, and M. Mataric. Most valuable player: A
robot device server for distributed control. In Proceedings of IROS 2001, Wailea, Hawaii, USA, 2001.
[71 A. Kameas, L. Bellis, I. Mavrommati, K. Delaney, M. Colley, and A. Pounds-Cornish. An architecture
that treats everyday objects as communicating tangible components. In Proc. of PerCom’03, 2003.
[8] J.Lee and H. Hashimoto. Intelligent space — concept and contents. Advanced Robotics, 16(3), 2002.
[9]1 R.Lundh, L. Karlsson, and A. Saffiotti. Plan-based configuration of an ecology of robots. In Proceedings
of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 2007.
[10] R.Muiioz-Salinas, E. Aguirre, and M. Garcia-Silvente. People detection and tracking using stereo vision
and color. Image and Vision Computing, 25(6):995-1007, 2007.
[11] H. Noguchi, T. Mori, and T. Sato. Automatic generation and connection of program components based
on rdf sensor description in network middleware. In Proceedings of IROS 2006, Beijing, China, 2006.
[12] L. Parker and F. Tang. Building multi-robot coalitions through automated task solution synthesis. Pro-
ceedings of the IEEE, 94(7):1289-1305, 2006.
[13] J. Rao and X. Su. A survey of automated web service composition methods. In Proceedings of the
ICWS’2004 International Workshop on SWSWPC, San Diego, California, USA, 2004.
[14] A. Saffiotti and M. Broxvall. PEIS Ecologies: Ambient Intelligence meets Autonomous Robotics. In
Proceedings of Smart Objects & Ambient Intelligence (sOc-EUSAI 2005), Grenoble, France, 2005.
[15] A. Saffiotti, K. Konolige, and E. Ruspini. A multivalued-logic approach to integrating planning and
control. Artificial Intelligence, 76(1-2):481-526, 1995.
[16] A. Sgorbissa and R. Zaccaria. The artificial ecosystem: a distributed approach to service robotics. In
Proceedings of ICRA’04, New Orleans, Louisiana, USA, 2004.
[17] G. Tesauro, D. Chess, W. Walsh, R. Das, A. Segal, I. Whalley, J. Kephart, and S. White. A multi-agent
systems approach to autonomic computing. In Proceedings of AAMAS’04, New York City, USA, 2004.

Cite as: M. Gritti and A. Saffiotti. A Self-Configuration Mechanism for Software Components Distributed in an
Ecology of Robots. Proc of the 10th Int Conf on Intelligent Autonomous Systems (IAS). Baden-Baden, Germany,
2008.

