Perceptual Anchoring via Conceptual Spaces

Antonio Chella _Silvia Coradeschi
University of Palermo, Italy Orebro University, Sweden
chella@unipa.it silvia.coradeschi @aass.oru.se
Abstract

Perceptual anchoring is the problem of creating and main-
taining in time the connection between symbols and sensor
data that refer to the same physical objects. This is one of
the facets of the general problem of integrating symbolic and
non-symbolic processes in an intelligent system. Géirdenfors’
conceptual spaces provide a geometric treatment of knowl-
edge which bridges the gap between the symbolic and sub-
symbolic approaches. As such, they can be used for the study
of the anchoring problem. In this paper, we propose a compu-
tational framework for anchoring based on conceptual spaces.
Our framework exploits the geometric structure of conceptual
spaces for many of the crucial tasks of anchoring, like match-
ing percepts to symbolic descriptions or tracking the evolu-
tion of objects over time.

Introduction

Perceptual anchoring is the problem of how to create and
maintain in time the right correspondence between sym-
bols and sensor data that refer to the same physical objects
(Coradeschi & Saffiotti 2000; 2003). Perceptual anchoring
is an important aspect of the connection between symbolic
and sensory based processes in an embedded intelligent sys-
tem, e.g., an autonomous robot. An example is the problem
of connecting the symbol used by a planner to refer to an ob-
ject needed for an action, say ‘cup-22’, to the data that cor-
respond to that object in the sensori-motoric system. This
connection must be dynamic since the same symbol must be
associated to new entities in the perceptual stream in order
to track the object over time or to re-acquire it at a later mo-
ment. Anchoring can be seen as an important special case
of symbol grounding (Harnard 1990) where the symbols de-
note individual physical objects.

Perceptual anchoring is but one of the facets of the gen-
eral problem of integrating symbolic and non-symbolic pro-
cesses in an intelligent system. Conceptual spaces have
been recently introduced as a way to bridge the gap be-
tween symbolic and sub-symbolic Al (Gérdenfors 2000) by
providing a geometric treatment of concepts and knowledge
representation. A conceptual space has dimensions that are
related with the concepts managed at the symbol level as
well as with the quantities processed by the sensors. Con-
ceptual spaces allow us to represent discrete concepts, which

Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Alessandro Saffiotti

Orebro University, Sweden
asaffio@aass.oru.se

Marcello Frixione
University of Salerno, Italy
frix @dist.dist.unige.it

are the main entities manipulated at the symbol level, inside
a structure where we can place continuous observable quan-
tities, which are the main entities provided by the percep-
tual system. Conceptual spaces therefore provide an inter-
mediate representation in which both symbolic and sensor-
based information can be integrated. In addition, conceptual
spaces are endowed with a geometric structure that allows to
perform topology- and similarity-based reasoning inside the
space itself. They are therefore well suited to formalize the
types of reasoning needed for perception, as demonstrated
by their use in several vision applications (Chella, Frixione,
& Gaglio 1997). Because of these reasons, it was pointed
out in (Chella, Frixione, & Gaglio 2003) that conceptual
spaces could offer a fruitful setting for the study, formal-
ization and implementation of perceptual anchoring.

In this paper, we develop a computational framework
for perceptual anchoring based on conceptual spaces. This
framework builds on the one proposed in (Coradeschi & Saf-
fiotti 2000), reformulated in a conceptual space setting. As it
turns out, the new framework brings a number of advantages
over the original one. First, it clarifies the integration be-
tween perceptual and symbolic information since both types
of information are represented in the same formal structure.
Second, it clarifies the dynamic aspect of anchoring by mod-
eling objects as trajectories in the conceptual space. Third
it allows us to replace most of the domain-dependent func-
tions used in the original framework by generic functions
that exploit the geometric structure of the conceptual space.
For example, in a conceptual space, the problem of match-
ing a perceived object to a symbolic description becomes a
simple test for set inclusion between the point representing
the perception and the region representing the symbolic de-
scription.

In the next section we outline the proposed framework in
general terms. We then translate it in formal terms, discuss
its use in the larger perspective of an embedded intelligent
system, and illustrate it by a simple example run on a mobile
robot equipped with a symbolic planner and a vision system.

The Conceptual Framework
Conceptual spaces

Girdenfors has introduced conceptual spaces in (Giardenfors
2000). Roughly, a conceptual space is a metric space whose



dimensions, called qualities, are related with the quantities
processed by the robot sensors. Examples of dimensions are
color coordinates (HSV) and spatial coordinates.

Points in a conceptual space, called knoxels, represent the
epistemologically primitive elements at the considered level
of analysis. For instance, a knoxel can represent an individ-
ual object, which is characterized by a given value for each
dimension of the conceptual space. The distance d(k1, k2)
between two knoxels k; and k», according to the given met-
ric, is interpreted as a measure of similarity between the en-
tities represented by k; and k.

Concepts are represented by regions in a conceptual
space: a concept corresponds to the region of the space in
which are located the points that are considered instances of
that concept. A special role is played by so called natural
concepts, which correspond to convex regions in a concep-
tual space. For a natural concept ¢, we can select a knoxel
k. as a prototype: points closer to k. correspond to “more
typical” instances of the concept.

We said that individual objects can be represented by
knoxels in the conceptual space. However, in a dynamic
perspective, objects can be more profitably seen as trajecto-
ries in the conceptual space indexed by time. The properties
of objects usually change with time: objects may move, an
object can alter its shape or color, and so on. As the prop-
erties of an object are modified, the point representing it in
a conceptual space moves, and describes a certain trajec-
tory. Several assumptions can be made on this trajectory,
e.g., smoothness, and obedience to physical laws.

The interest of conceptual spaces for our purposes is that
they constitute an intermediate level between the symbolic
system and the perceptual system. From the perceptual side,
knoxels in a conceptual space can represent the entities com-
ing from the perceptual system, together with their measured
attributes. These knoxels are abstractions of the sensor data,
since they represent a summary of the information regard-
ing a certain object coming from different sensors. For in-
stance, a knoxel can represent the information about the po-
sition, size and color of a given door as measured by a laser
system plus a vision system. From the symbolic side, the
conceptual space can be seen as an internal semantics for
the symbol system. Predicates in the symbol system are
mapped to region of the conceptual space, and individual
constants are mapped to knoxels. This semantics is percep-
tually grounded, since the elements of the conceptual space
are directly related to perception.

Anchors

The task of anchoring is to create and maintain in time the
correspondence between symbols and sensor data that refer
to the same physical objects. In terms of conceptual spaces,
this correspondence can be seen as a link between a symbol
that denotes a given physical object in the symbol system,
and a knoxel that represents the entity provided by the per-
ceptual system when observing that object. We call such a
link an anchor.

Fig. 1 illustrates this connection. The conceptual space in
this example only has the two qualities Hue and Size. The
meaning of the g and h functions will become clear later

Symbol System

Blue

cup-22 < N
Small
\/ P \

Sensor System

Figure 1: Anchoring the symbol "cup-22°.

in this paper. The anchor, denoted by «(t), connects the
symbol ’cup-22’ to a knoxel derived by the observation of a
given cup. The concepts Blue and Small constrain the region
in the conceptual space where this knoxel can be found.

Once we have an anchor, we must update it in order to
keep the symbol aligned to the corresponding perceptual
data as those data change with time. The anchor should
therefore account for the object persistence in face of a flow
of different knoxels from the perceptual system that all orig-
inate from the same object, and in face of changes in the
properties of the object, e.g., its position. To do so, we need
to include a state in the anchor. We take then an anchor
to be triple (z, k, p) where z is an individual constant, p is a
knoxel coming from the perceptual system, and & is a knoxel
that represents the system’s knowledge of the current state
(properties) of the object.

The anchor’s state can be seen as an internal model, at the
conceptual level, of the physical object. This model summa-
rizes both symbolic information and perceptual information
about the object. As the anchor evolves in time, its state de-
scribes a trajectory in the conceptual space. It is the task of
the anchoring process to update this state so that it approxi-
mates as well as possible the actual properties of the object.

Figuring out the evolution of an object (its future position,
or the way in which its features are going to change) can
be seen as the extrapolation of a trajectory in a conceptual
space. To identify again an object that has been occluded
for a certain time interval amounts to interpolate its past and
present trajectories. In both cases, the anchoring process
can make hypotheses concerning the evolution of the object
using the geometric properties of the corresponding trajec-
tory. Several sources of information can be used to constrain
the trajectories in the conceptual space, including symbolic
knowledge, smoothness hypotheses, and physical laws.

Fig. 2 illustrates the update of the anchor shown in Fig. 1.
The new state of the anchor (empty circle) is predicted from



Symbol System

Blue \

cup-22 < N
Small
-7 - \

\
’

Conceptual Space

Sensor System

Figure 2: Updating an anchor over time.

the previous one by assuming no change in size and color.
Two new knoxels (filled circles) are generated by the percep-
tual system. These may be different from the ones generated
at the previous time step because of sensor noise. Both per-
cepts are rather close to the predicted state. However, only
one of them is acceptable given the symbolic constraints
“Blue” and “Small”. This is used to update the prediction,
leading to the new state shown by a black square.

The information contained in the anchor integrates sym-
bolic and perceptual knowledge over time. This information
can be used by the different components of the intelligent
system to perform reasoning and action. For instance, the
position information can be used by a controller to steer the
robot toward an intended object. Interestingly, this informa-
tion is available even when the object is not in view.

The Formal Framework

We now translate in formal terms the conceptual framework
outlined above. We assume to have a symbol system ¥ and a
sensor system S that the anchoring system should connect.
The details of these systems are not important, but we pre-
suppose two things:

e 3 includes a set X of individual symbols, like *cup-22’,
and a set P of predicate symbols, like "blue’. We call a set
o of unary predicates a symbolic descriptor. Symbolic de-
scriptors can be used to qualify individuals, like a {large,
red, cup}.

e S produces at each time ¢ a measurement vector v, € V,
e.g., a color image or a laser scan.

Ingredients
Anchoring uses the following three main ingredients.

1 A conceptual space K including qualities {q1,...,qm}
with values in the domains K1, ..., K, respectively. We
call any pointk = (ky,..., kp) in K a knoxel.

Examples of qualities are HSV values, shape parameters,
and spatial coordinates.

The conceptual space is meant to provide an intermediate
space where we can represent both the information coming
from S and the one coming from ¥.. To do so, we need two
additional ingredients that establish the relation between K
and S and between K and ¥, respectively.

2 A conceptual sensor model h : V — 2K that associates
each measurement in S with a set of knoxels.

The h function transforms a measurement vector from
the sensor system into a set of knoxels in the conceptual
space. Each knoxel corresponds to an object that has been
observed, together with the observed values of its qualities.
For instance, if v; is a color image containing a red box and
a white door, then h(v;) may return a pair of knoxel whose
HSV qualities correspond to red and white, respectively.

Intuitively, h processes the raw data coming from the sen-
sory system in order to extract and summarize the data to be
available to the anchoring system'. For example, in (Chella,
Frixione, & Gaglio 1997) h performs a 3D reconstruction of
the perceived objects in a 11-dimensional conceptual space.

3 A predicate grounding function g : P — 2% that as-
sociates unary predicates in X to areas in the conceptual
space.

The g function gives semantics to symbolic predicates in
terms of observable qualities in the conceptual space. For
example, in Fig. 1 above, the predicate *blue’ is associated to
the area of the conceptual space consisting of all the knoxels
that have the Hue value within a given range, and no restric-
tion for the other qualities.

The g function can be extended to symbolic descriptors in
the obvious way: if ¢ € 27 is a symbolic descriptor, then
g(o) is the set of all the knoxels that satisfy all the prop-
erties in o, i.e., g(0) = [, 9(p)-We also denote by [o],
the knoxel in the conceptual space that represents the pro-
totype of the descriptor o. In the simplest case, [0], can be
computed by taking the center of mass of the set g(c).

We now define the central notion of an anchor, a data
structure connecting ¥ and S via the conceptual space K.

Definition 1 An anchor is a partial function o from time to
triplesin X x K x K.

Thus, an anchor a associates at every time ¢ a triple
a(t) = {(z,k,p) where: € X is an individual symbol
denoting a given object in the symbol system; p € h(v;) is
a knoxel in K corresponding to an object perceived by the
sensor system at time ¢; and k is a knoxel in K that rep-
resents the current (estimated) state of the physical object
denoted by x and perceived as p. We denote by {a®, a*, aP)
the three components of an anchor a.. The reason why « is
a partial function is that anchors do not live forever, but they
can be created and destroyed. Fig. 1 above illustrates all the
given ingredients.

An anchor effectively formalizes a time-dependent link
between a symbol in ¥ and the perceptual data from S that

!Currently, we do not represent the uncertainty in the measure-
ments in A. This will be part of our future work.



refer to the same physical object. The core of this link,
which guarantees temporal consistency, is the state infor-
mation about that object, stored in the conceptual space as
aF. As time evolves, a*(t) describes a trajectory in the con-
ceptual space K. The task of the anchoring process is to
maintain this trajectory as close as possible to the trajec-
tory that describes the actual physical object inside K, as
described above. The anchoring process does so via the fol-
lowing functionalities.

Functionalities

Their use will be illustrated and clarified in the next sec-
tion. The Find functionality takes as arguments a symbol
that needs to be anchored, together with a symbolic descrip-
tor, and returns an anchor for that symbol. If a matching an-
chor with no symbol is already present, it uses that anchor,
otherwise it creates a new one.

Find Take a symbol z and a symbolic descriptor ¢, and
return an anchor « defined at ¢ (and possibly undefined
elsewhere). This functionality is summarized by the fol-
lowing pseudo-code.

procedure Find (z, o, 1)
A—{ala®t)=L1L A ok(t) € g(o)}
ifA#£0(

then o + arg mlnaeA d(ak(t),[o],)

a(t) + (z,a"(t),a”(t))
else o «+ NewAnchor()

P« {p € h(vy) |p€glo)}

iftP#0

then p < argminycp d(p, [0]y)
a(t) + (z,p,p)
else a(t) « (z,[o],, L)
return «

First, we check if there is any anchor that is not currently
associated to a symbol (a*(t) = 1) and whose state sat-
isfies the symbolic descriptor (a*(t) € g(o)). If so, we
select the one closest to the prototype [o], of o according to
the distance function d, associate it to symbol z, and return.
Otherwise, we create a new anchor, and collect all the per-
cepts currently generated by the sensor system (h(v)) that
satisfy the symbolic descriptor o. We then select the percept
p closest to [o], and put it in the anchor. We use p to initial-
ize the state information. If no satisfying percept was found,
we initialize the state information using the prototype of o.

Note that situations of ambiguity, like multiple matching
percepts, are solved by exploiting the metric structure of the
conceptual space. Alternatively, Find might return one dis-
tinct anchor for each matching option, and leave the choice
to the symbolic system.

Our second functionality is somehow the dual of Find: it
creates a new anchor for a currently perceived object.

Acquire Take a knoxel p, assuming p € h(v;), and return
an anchor « defined at ¢ and undefined elsewhere.

procedure Acquire (p, t)
a + NewAnchor()
a(t) < (z,p, p)
return o

The Acquire functionality allows us to initiate a new an-
chor whenever we receive an “interesting” percept which
does not match any existing anchor. What constitutes an
interesting percept is decided by the program calling this
functionality: typically, these are percepts that might be later
anchored to a symbol for use in the reasoning system.

The first two functionalities can create new anchors. In
order to continuously update an existing anchor, we use the
following functionality.

Track Take an anchor « defined for ¢ — 1 and extend its
definition to .

procedure Track (a, t)

o + symbolic descriptor for a®(t — 1)
K « Predict(a* ,t) )
P+ {peh(vi)|pe K A peg(o)}
if P = {p}

then k «+ Update(K, p)

a(t) « (z,k,p)

else a(t) « (z, ic, 1)

return o

We first extrapolate the previous state a* through the Pre-
dict function. This returns an area K in the conceptual space
where the new state is expected to be. Then, we consider
those percepts p currently generated by the sensor system
which are compatible with both this prediction and the sym-
bolic descriptor o. If there is just one such percept, we set
the new state ¥ (¢) to a combination of the predicted states
K and the observation p. Otherwise, we set a¥(t) to the

prototype k of the prediction K.

Both the Predict and Update functions can exploit the
metric structure of the conceptual space. For instance, Pre-
dict can generate a neighborhood of the point computed by
linear extrapolation, and Update can compute the center of
mass of its arguments. Finally, the Reacquire functionality
is used to re-establish a lost symbol-percept connection, e.g.,
because the object could not be observed for some time.

Reacquire Take an anchor « defined for ¢ — & and extend
its definition to ¢.

procedure Reacquire (o, t)
o ¢ symbolic descriptor for o (¢)
P« {peh(vi)|pe€glo)}
P' « {p € P| Verify(p,a*, (o))}
if P' £ 0
then p + argming,cpr d(p, [0]4)
o(t) < (z,p, p)
else fail
return o

This functionality is somehow a combination of the Track
and the Find ones. We first select all the current percepts
that satisfy the symbolic descriptor. For each such percept
p, then, we check whether or not pis a plausible continuation
of the previous state a* by the Verify function. This function
tries to interpolate a trajectory between a* and p, which lays
inside g(o), also considering any physical constraints on the



trajectory. Finally, the percept closest to [o], is selected and
used to update the anchor. If no satisfactory percept is found,
the Reacquire functionality fails.

As in the case of the Find, ambiguities are solved inside
this functionality by selecting the closest candidate accord-
ing to the metric structure of the conceptual space. Alterna-
tively, we could return multiple anchors and leave the selec-
tion problem to the calling system.

Using the Framework

The above framework gives us the basic ingredients and
functionalities needed for anchoring. In this section, we dis-
cuss how to use this framework and present the implemen-
tation of the system that we have used in our experiments.

Anchors are created using two main mechanisms. The
first mechanism is Top-down, or goal-driven. This happens,
for instance, when the symbolic system needs to anchor a
symbol to perceptual data, e.g., in order to make an action
executable. Suppose that the symbol system decides to ex-
ecute the action to cross “door-22”. The symbol “door-22”
needs to be connected to the perceptual knowledge about the
door in order to successfully do the crossing. The anchor can
be created either when the connection with the perceptual
knowledge is acquired or previously using the prior knowl-
edge about the object. In the case of the door the anchor is
first created when the planner decides to go to that door. The
prior knowledge stored in a map about the door is put in the
anchor and it is used by the controller to approach the door.
When the door is perceived and recognized as ”door-22” the
actual perceptual data of the door are put in the anchor and
used by the controller for executing the crossing door behav-
ior.

The second mechanism to create an anchor is bottom-up,
or event-driven. When the perceptual system perceives an
object that is or could be of interest, it creates an anchor us-
ing the Acquire functionality. The aim is to keep in memory
perceptual information about objects that can be used later
on in the anchoring process.

Currently each anchor is considered independently. A
better approach that we are going to investigate would con-
sist in finding the connection simultaneously of all active
anchors and available percepts considering the possible de-
pendencies among the anchors.

The process to update an anchor in time to account for the
expected changes in properties and to include new observa-
tions is performed by the Track functionality. There might
be several anchors simultaneously active, one for each ob-
ject of interest: Track updates all of them.

The anchoring module is calling the Track functionality
every time that new perceptual data are received. All per-
ceptual data matching existing anchors are used by the Track
for updating the anchors. The Acquire functionality is called
for each of the percepts that are not matched to any existing
anchor and that represent interesting objects. In the Acquire
currently implemented an anchor is created for all new rec-
ognizable objects. This simple solution is working because
we hard-code in our vision routines which objects can be
recognized. However a more general solution would require

a mechanism with which the objects of interest are dynami-
cally decided.

In general, Track may have a very difficult job. For in-
stance, it is not clear how to perform tracking if there are
several matching percepts, or if there is a large amount of
uncertainty in the perceived properties. The strategy we cur-
rently use is to let the Track functionality recognize the prob-
lem, but not try to solve these situations. Instead, a trace of
the problems is left in the anchor itself by not updating its
percept. If the symbolic system is interested in an anchor
and this anchor is not updated, then the symbolic system can
decide to take actions in order to be able to have an updated
anchor again. For instance a planning system can perform
informative actions and call the Reacquire functionality to
recover the anchor (Broxvall, Karlsson, & Saffiotti 2004).

The Track and Acquire functionalities are called inside
the anchoring module. The Find and the Reacquire func-
tionalities are called by the symbolic system and are creating
and maintaining the actual connection between the symbols
and the perceptual data.

The Find functionality is used when the symbolic system
wants to create the connection between a symbol and a per-
cept. The Find can select one of the already existing anchor
or create a new anchor. In principle also anchors already
connected to a symbol could be selected, for instance “my
cup” and “a red cup” could denote the same object. How-
ever, we have not considered this case in our experiments
yet and we therefore leave it as an open problem.

The Reacquire functionality is called when the symbolic
system needs to have updated information about an object.
For the Reacquire to succeed the object needs to be currently
perceived while in the Find the object could have been per-
ceived also previously. The two functionalities can be com-
bined together, for instance the Find could be first used to
find an object appropriate for an action and the Reacquire to
be sure that the object is currently perceived.

If we consider the anchoring module as part of a larger
cognitive system, it can be interpreted as part of the short
term memory where perception and prior information (in-
cluded the one used for prediction) are integrated over time,
and which provides the necessary information for action and
immediate decision. It interacts with the long term memory
by accessing the prior information contained there. The dual
problem is how to transfer the information stored in the an-
chors to the long term memory. Anchors that are not used
should be removed from the anchoring module and stored
in the long term memory if they can be interesting for fu-
ture tasks. Prior information could also be revised given the
perceptual information stored in the anchoring module. Cur-
rently we do not have a mechanism to transfer information to
the long term memory. We simply keep all anchors created
during the performance of a task in the anchoring module
and we remove them when the task is finished. We intend to
explore the relation between long and short term memory in
our future work.

An additional interesting issue in the anchoring process
is the handling of ambiguous cases. In another paper in this
proceedings (Broxvall ef al. 2004) we propose a system han-
dling anchoring ambiguities using planning. We intend to



Figure 3: Our anchoring scenario.

explore in our future work how Conceptual Spaces can be
used to help resolving ambiguities.

A Simple Example

The ideas presented in this paper have been tested in a mo-
bile robot system. The system includes: a conditional pro-
gressive planner, PTLplan (Karlsson 2001), that has the ca-
pacity to reason about incomplete and uncertain informa-
tion, and the Thinking Cap (Saffiotti, Konolige, & Ruspini
1995), a fuzzy behavior-based controller including a naviga-
tion planner. The system uses sonars to navigate and detect
obstacles, and vision to perceive objects. The conceptual
space used in our system includes axes for color parameters
(HSV), for position, and for shape parameters.

In this example a rescue robot is given the task to go into
a room in a building (for which it has a map) and look for
victims — see Fig. 3. If there is none, it checks for dangers,
including red gas bottles containing explosive gases.

The system generates a plan including the action
“Cross(Door3)”. It creates an anchor top-down (through
Find) for Door3 from the map information and uses it to
approach the door. When the door appears in the image
a knoxel is created corresponding to the door. The Track
functionality realizes that this knoxel can be used to updated
the anchor thus completing it with actual perceptual infor-
mation. The refined and more precise information is used to
perform the crossing operation. When it is inside the room,
the robot looks for victims while exploring around. During
this, it sees two gas bottles, and creates two anchors bottom-
up (through Acquire). No victim is found. The robot has the
prior information that two red gas bottles should be present
in the room, Gasbottlel and Gasbottle2. It does a Find of
Gasbottlel whose symbolic description is {red gas-bottle}.
The area of the conceptual space determined by the predi-
cates red and gas-bottle contains the knoxels associated to
the two anchors created previously bottom-up. One of the
anchors is selected and it is then completed by attributing
it the symbol Gasbottlel. Similarly the Find of Gasbottle2
is executed. The final task of the robot is to go near Gas-
bottlel. The controller turns the robot toward the position
of the gas bottle. The position information is in the knoxel
contained in the anchor. The Reacquire functionality is then
executed to make sure that the gas bottle is in view before
starting the go near action. During the go near action the

Track functionality keeps the anchor updated.

Conclusions

According to the spirit of Gérdenfors’ proposal, various
forms of reasoning can be profitably seen as forms of ge-
ometric reasoning performed at the conceptual level. Such
a geometric approach to knowledge representation and rea-
soning is believed to be fruitful for the design of embedded
intelligent systems.

In this paper, we have shown that there is much to gain by

integrating Gérdenfors’ conceptual spaces in the anchoring
framework. Conceptual spaces offer an appropriate inter-
mediate level in which both symbolic and sensor-based in-
formation can be integrated; they clarify the dynamic aspect
of anchoring by modeling objects as trajectories in the con-
ceptual space; and they provide a metrics over concepts that
can be used inside the anchoring functionalities. The pro-
posed integration also contributes to the study of conceptual
spaces, by investigating how to represent individual objects
inside a conceptual space and how to account for their evolu-
tion in time. This problem had not been paid much attention
until now.
Acknowledgments: we would like to thank Lars Karlsson
and Mathias Broxvall for their contribution to the ideas re-
ported in this paper. This work has been funded by the
swedish KK foundation and by Vetenskapsradet.

References
Broxvall, M.; Coradeschi, S.; Karlsson, L.; and Saffiotti,
A. 2004. Have another look: On failures and recovery
planning in perceptual anchoring. In Proc. of the AAAIO4
Workhsop on Anchoring Symbols to Sensor Data.
Broxvall, M.; Karlsson, L.; and Saffiotti, A. 2004. Steps to-
ward detecting and recovering from perceptual failures. In
Proc of the 8th Int Conf on Intellgent Autonomous Systems.
Chella, A.; Frixione, M.; and Gaglio, S. 1997. A cognitive
architecture for artificial vision. Artif. Intell. 89:73-111.
Chella, A.; Frixione, M.; and Gaglio, S. 2003. Conceptual
spaces for anchoring. Robotics and Autonomous Systems
43(2-3):193-195. Special issue on perceptual anchoring.
Coradeschi, S., and Saffiotti, A. 2000. Anchoring symbols
to sensor data: preliminary report. In Proc. of the 17th
AAAI Conf., 129-135. Menlo Park, CA: AAAI Press.
Coradeschi, S., and Saffiotti, A. 2003. An introduction to
the anchoring problem. Robotics and Autonomous Systems
43(2-3):85-96. Special issue on perceptual anchoring.
Girdenfors, P. 2000. Conceptual Spaces. Cambridge, MA:
MIT Press, Bradford Books.
Harnard, S. 1990. The symbol grounding problem. Physica
D 42:335-346.
Karlsson, L. 2001. Conditional progressive planning under
uncertainty. In Proc. of the 17th IJCAI Conf., 431-438.
Saffiotti, A.; Konolige, K.; and Ruspini, E. 1995. A
multivalued-logic approach to integrating planning and
control. Artificial Intelligence 76(1-2):481-526.



