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Abstract

Research on execution monitoring in its own is still not very common within the field of robotics and autonomous systems. It is
more common that researchers interested in control architectures or execution planning include monitoring as a small part of their
work when they realize that it is needed. On the other hand, execution monitoring has been a well studied topic within industrial
control, although control theorists seldom use this term. Instead they refer to the problem offault detection and isolation (FDI).

This survey will use the knowledge and terminology from industrial control in order to classify different execution monitoring
approaches applied to robotics. The survey is particularly focused on autonomous mobile robotics.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

The robot manipulator has been an essential tool for
he development of the automated industry. In the near
uture these robots will be accompanied by intelligent
obile robots that will assist us in many different ar-
as, including transportation, cleaning, mining, or agri-
ulture. Such intelligent robots incorporate increased
exibility and need the ability to plan their actions and
o execute them in a safe way. In order to operate in

changing and partially unpredictable environment,
hese robots also need the ability to detect when the ex-
cution does not proceed as planned, and to correctly
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identify the causes of the failure. Anexecution moni-
toring system is a system that allows the robot to de
and classify these failures.

In this survey we will use the terminology giv
from the field of industrial control in order to class
different execution monitoring approaches applie
robotics. This particular terminology is chosen si
execution monitoring has been a well studied to
within industrial control for several years, and the w
within this field is therefore relatively mature.

1.1. Motivation

Execution monitoring is needed in robotics in or
to handle problems caused by uncertainties, both i
robot itself and in the environment. In[46, p. 7] the

921-8890/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.robot.2005.09.004



74 O. Pettersson / Robotics and Autonomous Systems 53 (2005) 73–88

concept of uncertainty is classified for systems within
the field of artificial intelligence. Based on the typology
in this work, four mainsources of uncertainty can be
found in robotics:

• Missing information;
• unreliable resources;
• stochastic phenomena; and
• inherently vague concepts.

Since the world is not totally observable, the robot
will occasionally suffer frommissing information. An
example of such an occasion is when the robot has no
knowledge about what is behind a closed door. In some
cases a used resource can be faulty. Examples ofunre-
liable resources are a broken driving shaft, or a given
map that is old and out of date. When measuring some
physical quantity, there is always a certain variance in
the value. An example of this so calledstochastic phe-
nomena is the sonar readings that include a stochastic
noise component.Inherently vague concepts can occur
when the world state or human knowledge are mod-
eled. For example, concepts like “doors are most likely
open,” or “large red door” are inherently vague con-
cepts.

Furthermore, the sources of uncertainty are present
at several levels of abstraction within a robotic system.
Many robots have not only the ability to move, but also
the ability to avoid collision, localize itself, recognize
objects, and reason about goals and actions. Therefore,
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type of knowledge. For example, 50 sonar readings in
the same direction indicating a free distance of about
8 m is a more certain knowledge compared to two sonar
readings in the same direction, where one measurement
indicate 4 m and the other 25 m.

The idea of eliminating uncertainty is very com-
mon in industrial robotics and results in good perfor-
mance, but has a number of drawbacks. First, using
high-precision mechanics or adding sophisticated sen-
sors might significantly increase the cost of the robot.
Second, engineering the environment decreases flexi-
bility; for example, industrial robots that follow fixed
tracks in the floor will not be flexible enough to work
as multi-purpose service robots. Third, relying on an
engineered environment might also decrease robust-
ness of the robot. For example, the artificial landmarks
could be hidden by dust or obstacles. Finally, not all
sources of uncertainty can be eliminated by engineer-
ing the environment. For example, actions by humans
cannot always be predicted.

Reasoning about uncertainty is necessary in the
planning stage in order to weight different viable plans.
Nevertheless, the reasoning do not necessarily increase
robustness of the execution. In other words, no reason-
ing can obtain information that is missing. For example,
the robot can only guess what is behind a closed door,
but not really know before the door is opened.

Therefore, in order to act robustly in a partially un-
known and dynamic world, the system must also tol-
erate uncertainty. In other words, the system must be
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any fundamentally different faults might occur
luding hardware faults to more abstract knowle
epresentation faults.

According to[67] the effects from uncertainty ca
e decreased by the use of three main ideas:

eliminating uncertainty;
reasoning about uncertainty; and
tolerating uncertainty.

Some of the uncertainty can be eliminated by
ng better hardware, or engineering the environm
xamples of better hardware are high-precision
hanics and sophisticated sensors. The environ
an be engineered by putting up artificial landma
r putting fixed tracks in the floor. When reason
bout uncertainty more complex models of uncerta
re used. In this case uncertainty can be modeled
repared for failing execution. One way to do this i
ntroduce an execution monitor in the control archi
ure.

.2. Definitions

There are many different definitions of execut
onitoring in the literature. For example, within t

eld of artificial intelligence (AI), more specifical
obot planning, we find the following definition[13,
. 178]:

n robot planning, the process of sensing the sta
nfluence subsequent action is called execution m
oring.

Another more specific and informative definition
xecution monitoring within the field of AI is given
5, p. 26]:
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Execution monitoring is an agent’s process of iden-
tifying discrepancies between observations of the
actual world and the predictions and expectations
derived from its representation of the world, clas-
sifying such discrepancies, and recovering from
them.

The first definition is rather general and perhaps not
useful for this work. On the other hand, the second def-
inition assumes that a model with prediction capacity
is used. This comes from the notion of “predictions
and expectations.” With the use of this definition a sys-
tem without a predictive model would not be perform-
ing execution monitoring. Within the field of industrial
control we find a definition that does not make any
commitment to prediction. The definition is given in
[41, p. 710], and when slightly modified into our ter-
minology it reads:

Definition 1 (Execution monitoring).Execution mon-
itoring is a continuous real-time task of determining
the conditions of a physical system, by recording in-
formation, recognizing and indicating anomalies in the
behavior.

Compared to the first definition this one is more
informative. At the same time, it is more general than
the second one, since no assumptions about models
are made. Note that this definition does not include
the process of recovering from the detected faults. By
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contain only the fault detection and isolation stages. In
many cases the termfault diagnosis is used as a syn-
onym to fault isolation.

As mentioned earlier, execution monitoring is a well
studied topic within the field of industrial control, al-
though control theorists seldom use this term. Instead
they refer to the problem of fault detection and isolation
(FDI). Many different monitoring methods have been
validated in industrial applications since the end of the
1970s. Therefore, the amount of existing work within
this area is large. Several text books have been written
on the topic, see for example,[29] or[10]. Furthermore,
the topic is also very well categorized within this field.
Definitions to many terms used in FDI, together with a
comprehensive survey on applied FDI systems are, for
example, given in[41].

According to Chiang et al.[11] execution monitor-
ing can be classified to one or more of three approaches,
namely:analytical,data-driven, andknowledge-based.
In the coming sections these three approaches will be
introduced. An overview of existing execution mon-
itoring systems applied to robotics is given. Partic-
ularly, mobile robotic systems are discussed. Each
monitoring system is classified into one of the three
approaches.

2. Analytical approaches

The analytical approach is model-based since
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eferring to the definition of execution monitoring,
an simultaneously define afault as an anomaly in th
ehavior of the monitored system.

According to Gertler[29, p. 3]a monitoring system
ould be divided into the following three functiona
ies:

Fault detection that indicates that something is go
wrong in the monitored system;
fault isolation that makes a classification of wha
going wrong; and
fault identification that determines the magnitude
the fault.

hile fault detection is an absolute must in any p
ical system, and isolation is almost equally import
ault identification may not always justify the extra
ort it requires[29]. Therefore, many practical syste
athematical models, often constructed from
rinciples, are used. By first principles we h
ean basic models from physics, for example, fl
ynamics, mechanics or electricity. This appro
elies on the concept ofanalytical redundancy. This
eans that two analytically generated quanti
btained from different sets of variables are compa
he resulting difference, calledresidual, indicates th
resence of a fault in the system.Fig. 1 illustrates the
onceptual structure of such an analytical appro
s can be seen in this figure two main stages
erformed, namelyresidual generation and decision
aking.
Residual generation: Residual generation is an

orithm that processes the measurable inputu(s) and
utputy(s) of the system in order to generate the re
al signalr(s), wheres denotes the system state giv

n the Laplace space. It uses the model describin
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relationship between those variables in exact mathe-
matical terms, and any inconsistency in this relation-
ship will indicate a fault in the system. The residual
signal is given as:

r(s) = Huu(s) + Hyy(s), (1)

whereHu andHy must be chosen such that:{
r(s) = 0 when no fault occurs, and

r(s) �= 0 when a fault occurs.
(2)

Decision making: The residual is then examined for
the likelihood of faults, and a decision rule is applied
to determine if a fault has occurred. This decision pro-
cess can be based on, for example, a simple threshold
test, on the instantaneous values of moving averages of
the residual, or it may involve methods from statistical
decision theory. To obtain fault information the deci-
sion making must also include fault isolation. A single
residual signal is sufficient to detect the presence of a
fault but several residual signals are often required for
fault isolation.

In the literature on analytical-based fault detec-
tion three different approaches to residual generation
can be identified[59], namely:parameter estimation,
parity relations, and observers. Parameter estima-
tion together with observer-based approaches are the
two most frequently applied methods for fault detec-
tion, especially for the detection of sensor and pro-
cess faults. These two methods are used in nearly
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Fig. 1. A schema of an analytical approach to fault detection and
isolation.

residuals are calculated as the difference between the
reference model parameters and the estimated model
parameters.

An overview of theory and applications of parameter
estimation approaches is found in[38]. This approach
is, for example, applied to fault detection in robot arms
[39]. In [15] a complex kinematic model of a robot
arm is used for fault detection. The residual is calcu-
lated from filtered torque signals. The main strength of
this work is that no acceleration measures of the manip-
ulator are required. In another, slightly more complex
example, the parameters are calculated by a Hopfield
neural network, and the decision making for fault de-
tection and isolation is performed by a fuzzy expert
system[36].

2.2. Parity relations

In this approach, mathematical equations referred to
asparity equations are compared. The system’s model
parameters must be known a priori. The residual is gen-
erated by a consistency check of the reference model
equation and the system equation generated from mea-
surements. A consistency violation of the equations,
an equation error, indicates that a fault is present in the
system.

The origin of using parity relations for fault detec-
tion is found in aerospace related research, primarily
sponsored by NASA in the 1970s. An early overview
o
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0% of all applications[41]. Recently, it has bee
ealized that there is a fundamental equivalence
ween observers and parity relations[29]. Actually
he two techniques produce identical residuals if
enerators have been designed for the same

fication. A relationship between parameter esti
ion and parity relations has been found as w
28].

.1. Parameter estimation

In this approach a reference model is created by
dentifying the system’s physical parameters in a fa
ree situation. The physical parameters can be fo
sing system identification theory methods[50]. Ex-
mples of such physical parameters are friction
ass velocity resistance. The parameters are the
eatedly re-identified online during monitoring. T
f this approach is found in[82]. In the textbook[29]
more recent survey is given. Yet another examp

ault detection with parity relations is given in[85].
ere the parity equations are designed by the us
iscrete time wavelet transforms.
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2.3. Observers

Most execution monitoring systems reported in the
robotics and AI literature falls into this category. As for
parity relations, the system’s model parameters must be
known a priori. The underlying idea in observer-based
approaches is to estimate the system outputs from avail-
able inputs and outputs of the system. The differences
between the measured outputs and the estimated out-
puts are used as the vector of residuals. A very com-
mon special case of a state observer is the Kalman fil-
ter [26]. There is an advantage in using observer-based
methods over parameter estimation. In the observer-
based approach no special excitation is required, the
method works in steady-state operation conditions as
well. Therefore, the observer-based approach is appro-
priate if the faults are connected to problems in actua-
tors, sensors, or the unmeasurable state variables.

The original idea of using observers, and perhaps
also analytical monitoring in the first place, is given
in [3]. An overview of observer-based fault detection
methods is found in[24]. In [70] a fuzzy observer-
based fault detection system is applied to a robot arm.
More work on fuzzy observers is found in[4]. An other
observer-based monitoring system applied to a robot
arm, that also include fault isolation, is presented in[9].
Here the residual vector is used to distinguish between
two types of faults, namely: actuator faults and sensor
faults.

Already the first autonomous mobile robot Shakey
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Fig. 2. An example of a triangle table.

is a general model for crossing any door between two
rooms. The main drawback of this method is the lack of
robustness, since full observability of the robot’s state
is assumed.

A similar approach to PLANEX is presented in[18].
Faults are detected by comparing the current state with
the model of the world and the plan. This approach
also involves fault isolation: when a discrepancy arises
between the expectations and the actual situation, a rea-
soning functionality tries to find suitable explanations
and a recovery plan.

Kalman filters[26] are commonly used for sensor
fusion. This is probably due to the fact that the Kalman
filter is an optimal estimator in the minimum mean
squared error sense when the sensor model predictions
and system model are assumed to be corrupted with
zero-mean Gaussian noise. Furthermore, Kalman fil-
ters can be applied in observer-based fault detection. In
[69] Kalman filters are used to detect faults in a laser
and gyroscope navigation system. In[53] a Kalman fil-
ter is used for fault detection and sensor improvement
of a GPS navigation system tested on an outdoor mo-
bile robot. Using one Kalman filter is often sufficient
for sensor fusion or fault detection. If the faults also
must be isolated, a bank of Kalman filters, that is, sev-
eral Kalman filters in parallel, are often needed. In[66]
three different sensor faults are isolated on a mobile
robot using a bank of Kalman filters. Here each Kalman
filter is designed to detect one of the following faults: a
noisy gyro, a broken gyro (stuck to a fixed value), and a
b is
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t ere
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t ions
i face
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ad a system for fault detection, although it was
olved at a high level of abstraction finding fau
lans. Shakey managed to accomplish tasks su
ushing boxes from one room to another in a phys
ut highly engineered, environment. On-board Sha
LANEX [19] was used for execution and monitor
f plans produced by the well known planner STR

20]. The plan given from STRIPS was stored in a
lar form called atriangle table. A triangle table (se
ig. 2) is a triangular array where the rows corresp

o the actions of the plan. The preconditions are give
he cells to the left of the action, and the expected
ome of each action is given in the cell below the act
ault detection is realized by comparing the meas
tate to the expected outcome given from the tria
able. An advantage of the triangle table is that no
orld states have to be modeled since the plan ca
eneralized. For example, the action gothru(d1, A
roken wheel encoder. In[30] the performance of th
pproach is increased by sending the residuals

he bank of Kalman filters to a neural network. H
he neural network performs the decision making
he coming decade NASA is planning several miss
nvolving a planetary rover moving across the sur
f a planet and collecting samples. In[79] Kalman fil-
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ters together with Markov decision processes perform
fault detection and isolation on such an autonomous
vehicle. Three types of hardware faults are isolated: a
stalled motor, a broken gear, and a broken gear and a
broken encoder.

The Procedural Reasoning System (PRS)[27] was
developed as the execution and monitoring system on
board the mobile robot Flakey. This system is inspired
by the work on human reasoning called the Belief-
Desire-Intention (BDI) model[7]. During execution a
certain subplan, a so-calledintention, is selected in or-
der to achieve the given goal. Each intention has an ex-
pected outcome that is monitored by the system. When
an intention fails, that is when the expected world-state
differs from the real world-state, precompiled recov-
ery routines can be called to handle the problem. PRS
is therefore able to detect and isolate faults and pur-
sue new goals dynamically. The LAAS architecture,
see[56] and [2], is an architecture for autonomous
agents. The fault isolation and recovery functionali-
ties are based on PRS. When a fault is detected, that is,
when the real outcome differs from the expected out-
come, the execution is halted and a failure tree is tra-
versed in order to isolate the fault. The failure trees are
precompiled models of the known faults. The LAAS
architecture has been applied in a variety of domains
including the control of spacecraft systems[31], and
the control of mobile robots[37]. More recent results
in the improvement of the architecture is found in[49].

The Reactive Action Packages (RAP) system[21]
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The autonomous spacecraft, named Deep Space One,
was launched in 1998 to fly by asteroids and comets,
photographing and sending back information to scien-
tists on Earth. Livingstone performs state identification
of the modeled system in order to detect faults and iso-
late them. In Livingstone 2[47] the state identification
is improved by the use of Markov decision processes
[6]. The transition model between states in Livingstone
2 is restricted in order to reduce the state space when
the problem space grow. In a set of simulations, Living-
stone 2 is shown to perform better and to use less CPU
time compared to Livingstone 1. Livingstone 2 is im-
plemented, for example, on a free-flying mobile robot
[16]. A free-flying mobile robot is a spheric science-
fiction-like robot that can perform a number of tasks
both inside and outside a space craft, such as remote
sensing, or providing crew support.

The execution monitoring device on board the mo-
bile robot Xavier[74] is programmed in TDL[73].
TDL is a language package for C++ that is used for
planning, monitoring and dynamic execution. It is very
similar to PRS and RAPS. The monitor can detect and
isolate faults in the execution of navigation plans. A
fault is defined as a significant difference between the
observed state of the world and the expectation with re-
spect to the nominal situation[17]. Therefore, this ap-
proach can also be categorized as observer-based mon-
itoring. Yet another observer-based fault detection and
isolation system evaluated on Xavier is Rogue[89]. An
interesting feature in this system is its learning capa-
b
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as introduced as a plan execution and monitoring
em for mobile robots and has much in common w
RS. In the RAP system a task is described by a
hich is effectively a context sensitive program for c

ying out the given goal. The RAP can also be thou
f as describing a variety of plans for achieving

ask in different situations. Similar to the intentions
RS, each RAP has its own goal and expected outc
herefore, a RAP can, be programmed to handle m
led faults. The RAP system is the main compone

he Animate agent architecture, see for example[22]
nd[23]. This architecture is implemented on the m
ile robot Chip. Chip is able to find, identify, and tra
bjects. It is also able to manipulate objects, for ex
le, picking up trash and bring it to a trash can, us
robot arm.
Livingstone[81] is the name of the control archite

ure used in NASA’s first New Millennium spacecra
ilities that are described in[90].
Rationale-based monitoring[77] is another plan

ing and monitoring system. In Rationale-based m
toring, a set of states within the world-model are
ected to be monitored. This approach dramatically
rease the state space to be observed. When a
s detected, that is when a monitor identifies a po
ially relevant change in the world-state, the cur
lan can be transformed in order to repair the p

em. The Rationale-based monitor was initially imp
ented within the Prodigy planner[76], and tested i

arious simulated domains. In more recent work
ationale-based monitor has been evaluated on a
ile robot[51].

A multi-agent approach to observer-based fault
ection is presented in[8]. In this approach the differe
gents’ states are combined into a joint state that i
erved. Precompiled rules are used to recognize
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the current joint state indicates a fault. The approach
has been evaluated in simulated battlefield scenarios.

3. Data-driven approaches

In contrast to analytical approaches, the data-driven
approaches do not rely on mathematical models. In-
stead, the information used for fault detection and iso-
lation is derived directly from input data. The decision
making is often based on statistical methods. Modern
industrial systems, whether an entire industrial plant
or an autonomous robotic system are large-scale sys-
tems. With their heavy instrumentation, these systems
produce an exceptionally large amount of data. The
strength of data-driven approaches is their ability to
transform the high-dimensional data into a lower di-
mension space; in which the important information is
captured. By computing statistic measures, the moni-
toring system can be improved significantly in large-
scale systems. The main drawback using this approach
is that the performance is highly dependent on the
amount and quality of the input data.

Execution monitoring based on data-driven ap-
proaches has, until now, been almost totally neglected
in the AI literature. Nevertheless, these approaches
have been adopted in some work on robotics within
the field of industrial control, although analytical ap-
proaches are much more frequent.

The application of statistical theory to execution
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Fig. 3. An example of a Shewhart chart showing the measure of a
certain observation variablex(t). A fault is detected either when the
measure exceeds the upper limit or goes below the lower limit.

tion approaches in the industry. In these model-based
approaches the residual signal is often compared to
a given limit value. If the measured variable exceeds
the threshold limit a fault is indicated. This method
is called limit value checking and is the most fre-
quently used method for decision making in industry
[40].

However, limit value checking is not restricted to
analytical monitoring. Instead a univariate statistical
approach can be used to determine the thresholds for
someobservation variables. Observation variables are
input data obtained directly from a sensor. In this ap-
proach a Shewhart chart[52] (seeFig. 3) is often used
to visualize the limits when minimizing the number
of false alarms and missed detections. Tight threshold
limits for an observation variable result in a high false
alarm rate, and a low missed detection rate, while limits
that are too spread apart result in a low false alarm rate
and a high missed detection rate. Given the threshold
values, statistical hypothesis theory can be applied to
predict the false alarm and missed detection rates based
on the statistics of the data in a training set. The princi-
ples of statistical hypothesis theory can, for example,
be found in[65].

An early example of fault detection using limit value
checking on an autonomous robot is the work on the
Thinking Cap[68]. The Thinking Cap is a robot control
architecture including fault detection based on fuzzy
logic. In this system a variable, that is a fuzzy com-
position of several variables, is compared to a given
l de-
t lled.
onitoring relies on the assumption that the cha
eristics of the data variations are relatively unchan
nless a fault occurs in the system. It implies that
roperties of the data variations, such as the mea
ariance, are repeatable for the same operating c
ions, although the actual values of the data may n
ery predictable.

The data-driven approach can be divided into
roups referring to the number of variables meas
y the monitor. Inunivariate statistical monitoring
nly one variable is measured at a time, and inmul-

ivariate statistical monitoring several different var
bles are measured and combined.

.1. Univariate statistical monitoring

As mentioned in Section2, parameter estimatio
nd observers are the most common residual ge
imit in order to detect faulty plans. When a fault is
ected a recovery strategy, that is, replanning is ca
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In [57] this work is extended by comparing the fuzzy
variable to several limits in order to obtain the mag-
nitude of the fault. Later work[58] has combined the
execution monitoring system with ideas from the BDI
model.

More recently, another univariate limit value check-
ing approach is applied to a mobile robot[45]. Here
the input variable is the motor current. The limit value
is derived from empirical data when the mobile robot
work under normal conditions. This work shows that
the performance is not very reliable when only one vari-
able is measured. For example, when the robot moves
upwards in a slope the motor current increases even
though there is no fault. To overcome this problem
a second observation variable is introduced. When a
gyro measuring the pitch direction of the robot is used
to tune the motor current limit, the performance is in-
creased significantly. In other words, a monitor based
on multivariate statistics is more robust than one based
on univariate statistics.

3.2. Multivariate statistical monitoring

For univariate statistical methods, the thresholds are
determined for each observation variable individually
without considering the information given from the
other variables. In contrast, the multivariate statistical
methods do consider the correlation between variables.
This gives a much more powerful tool both for fault de-
tection and fault isolation.
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transformed observations, the transformed variables
are calledprincipal components, and the individual
transformed observations are calledscores.

Fault detection can be performed by monitoring
each one of the scores using the univariate statisti-
cal approach discussed above. An advantage of using
PCA in fault detection is the dimensionality reduction
of the data. When the data is projected into the lower di-
mensional space using PCA, a smaller number of vari-
ables are checked compared to a system without the
use of PCA. Also fault isolation may be performed us-
ing PCA. The simplest way is to construct a singlePCA
model, that is, the transformation matrix, and define re-
gions in the lower-level dimensional space which clas-
sifies whether a particular fault has occurred. The clas-
sification can be made by statistical methods, for exam-
ple, multiple linear regression (MLR). Unfortunately,
this approach is unlikely to perform well when several
faults can occur[88]. A better idea is to use several PCA
models based on data collected from specific fault sit-
uations. In this case the data is transformed by all PCA
models and then an arbiter chose the model describing
the fault that most likely occurred. This method of cre-
ating several PCA models is often calledmulti-model
PCA (mPCA).

Early work on fault detection applied to a planetary
rover is presented in[25]. This is perhaps the first ex-
ample of a data-driven execution monitor applied to
an autonomous mobile robot. In this multivariate sta-
tistical approach the limit values for the different ob-
s on-
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The quality and quantity of the training data h
large influence on the performance of data-dr

tatistical approaches. If sufficient data is not av
ble to accurately estimate the mean vector
ovariance matrix, this will result in suboptimal fa
etection and isolation. One way to improve
erformance is to reduce the number of input varia
sing dimensionality reduction methods. Once
imensionality reduction is done, decision makin
erformed by applying discriminant analysis to
educed-dimensional space.

Principal component analysis (PCA) is probably
ldest and best known method for multivariate a
sis [33]. PCA is a linear dimensionality reducti
echnique, optimal in terms of capturing the variab
f the data. Algebraically, principal components

inear combinations of a set of random variables
istinguish between the transformed variables an
ervation variables are given from an execution m
toring planner. This particular planner calculates
et of minimum and maximum limits by simulating t
xecution of a given plan. The simulation takes into
ount the uncertainty in the local terrain data der
rom statistical measures.

Recent work on fault detection and isolat
pplied to a planetary rover is presented in[14].
ere the system is described as a discrete-
robabilistic hybrid automaton. This work is high
elated to Kalman filters and the approach is simila
bserver-based approaches. But instead of definin
ifferent states in the automaton from first princip

he transition functions between states are given
tatistical measures from several observed varia
ault isolation is realized usingparticle filters [78].

particle filter is a Markov chain Monte Car
lgorithm that approximates the belief state usin
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set of samples (particles), and keeps the distribution
updated as new observations are made over time.
The faults addressed include: actuator faults, such as
broken motors or gears; faults due to environmental
interactions, such as a wheel stuck against a rock; and
sensor faults, such as broken encoders.

Another multivariate statistical approach applied to
a mobile robot is given in[75]. Here probabilistic mod-
els of both the sensors and the environment are used for
sensor fault detection. This probabilistic sensor fusion
approach is used for fault detection in the sonar sensors.

In the work onmodel-free execution monitoring [60]
the use of mPCA together with MLR is applied to an au-
tonomous mobile robot. The approach is called model-
free since no predictive models of the system are used.
As can be seen inFig. 4the activation levels of a set of
behaviors act as input data to a standard pattern recog-
nition system that performs both fault detection and iso-
lation. Here a number of robust features are extracted
from several activation level measures in a time inter-
val. Both normal behavior and the different faults are
learned on-line during execution. The idea is evaluated
in a number of simulations when two faults are isolated:
a closed door, and a corrupted world-model[61].

4. Knowledge-based approaches

Generally knowledge-based approaches are de-
signed to simulate the problem-solving behavior of
h the
f ata-
d most
i ches
i ta-
d The
k three
c
c

4.1. Causal analysis

Causal analysis methods are based on causal mod-
eling of fault-symptom relationships. These methods
are primarily used for fault isolation.

One method for fault isolation by causal analysis is
with the help of asigned directed graph (SDG) [11].
An SDG is a map showing the relationship between
process variables. It reflects the behavior of the equip-
ment involved as well as the general system topology.
The nodes can represent process variables, sensors, sys-
tem faults, or component faults. When an SDG is used
for fault isolation, upper and lower threshold limits for
each variable must first be defined. The limit values
may be found using the methods discussed in Sec-
tion 3. In the SDG a node takes the value of 0 when
its measured variable is normal. When the variable is
higher or lower than the given upper or lower limit
the node takes the value of + or−, respectively. As-
suming that a single fault affects only a single root
node and that the fault does not change other causal
relations in the SDG, the causal linkages will con-
nect the fault origin to the observed symptoms of the
fault.

The work on Overseer[44] differs from most pre-
viously referred work since it focuses on monitoring
multi-agent systems, that is, several robots in parallel.
In Overseer the agents are modeled as a signed directed
graph. This graph is a map showing the relationship
between belief and the different agents’ statuses, and
i ll as
t rre-
s ding
t ugh
e

• on-

•

em. Fa system.
uman experts. This category is not distinct from
ormer two approaches since both analytical and d
riven approaches apply to this class. Perhaps the

mportant strength using knowledge-based approa
s the opportunity to combine analytical and da
riven approaches in a hybrid monitoring system.
nowledge-based approaches can be divided into
ategories:causal analysis, expert systems, andartifi-
ial neural networks.

Fig. 4. Schema of the model-free execution monitoring syst
t also reflects the behavior of each agent as we
he full team hierarchy. Each node in the graph co
pond to the known states of all the agents. Accor
o [44] the state information can be obtained thro
ither:

team-member’s communication (report-based m
itoring); or
observation (overhearing) of team-members.

ult detection and isolation are realized by a pattern recognition
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Since there are many problems involved in the commu-
nication between agents[43], their research is focused
mainly on the observation of team-members. The key
idea is to use various models of social relationships
among agents, rather than goal-attentive models of the
tasks. For example, a driver may not see a road-sign
that tells it to turn, and therefore incorrectly continues
straight ahead. But if the driver is driving in a convoy,
where everybody shares the goal destination, the driver
can infer the existence of the road-sign when everybody
else turns. Overseer has been applied to a domain that
involves automated pilot agents that participate in syn-
thetic multi-agent battlefield simulation environments.

Other work that is focused on multi-agent monitor-
ing is the work on Execution Assistants (EAs)[80].
This work has its focus on dynamic, data-rich domains
where humans are ultimately responsible for team be-
havior. Therefore, the automated help should interac-
tively support effective and timely decision making by
the human. In contrary to Overseer, the EAs rely on
state information that is communicated between agents.
This communication is performed using peer-to-peer
dissemination algorithms and forward fusion of sensor
reports, in order to reduce the bandwidth requirements.
Since peer-to-peer is fault tolerant, allowing any node
to act as a server, the reliability of the communication
is increased. The EAs use the BDI model and are im-
plemented as multiple asynchronous PRS agents (dis-
cussed in Section2.3). Each agent has beliefs about the
state of the world, desires to be achieved, and intentions
r in or-
d been
a ne
d dis-
t and
v erat-
i ner
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t d by
d ex-
a nt’s
a ed an
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to
e
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different types, namely: design knowledge, sensor
knowledge, historical knowledge, mission knowledge,
and fault knowledge. The key benefit in this approach is
that a priori fault isolation knowledge, primarily gath-
ered from human experts can be combined with avail-
able vehicle knowledge, for example, sensor knowl-
edge. Recovery has been tested on a real autonomous
underwater vehicle (AUV). In the experiments one
type of actuator fault is isolated, namely a broken lift
thruster.

4.2. Expert systems

Many fault isolation applications in the areas of en-
gineering have made use of expert systems[42]. Expert
systems are used to imitate the reasoning of human ex-
perts when isolating faults. The knowledge in the expert
system is often formulated in terms of IF-THEN rules,

IF condition THEN conclusion, (3)

which can be found from first principles or a structural
description of the system for isolating faults. Expert
systems based on logic using terms that are either true
or false are relatively sensitive to uncertainties. One
way to overcome this problem is to usefuzzy logic [86].
Fuzzy logic provides an approximate, but still effective,
means of describing complex ill-defined systems by
using graded statements instead of strictly true or false.

An example of an expert system for fault detection
and isolation in a flexible assembly work cell is given
i bot
m lts
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t rat-
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• of
epresenting actions that the agent has adopted
er to achieve its desires. The EA approach has
pplied to two different domains in simulation. O
omain has hundreds of mobile, geographically

ributed agents, a combination of humans, robots,
ehicles. The other domain has a handful of coop
ng robots. Alerts were generated in a timely man
ithout inundating the user with too many alerts. L

han 10% of the alerts were unwanted, as judge
omain experts. Several faults were isolated, for
mple: an agent is out of position or late, an age
ctions were not effective, and an agent has adopt
ction conflicting with other agents.

A heterogenous knowledge-based approach
xecution monitoring is presented in[32]. In this ap-
roach, named Recovery, different types of knowle
re linked together with the use of partitioned sema
etworks. Here the knowledge is categorized into
n [1]. A fuzzy expert system is applied on a ro
anipulator in[84]. Some recent theoretical resu
n expert systems applied to robotics are present

12].
The monitoring system within the behavior-ba

aphira architecture[48] is designed as an expert s
em implemented in linear temporal logic (LTL).
his approach a set of temporal fuzzy rules, ope
ng on the activation levels of the behaviors, are u
or fault detection and isolation. The general struc
f the monitoring system, shown inFig. 5, consists
f:

a monitoring knowledge base containing model
the expected and unexpected ideal behavior o
robot in terms of temporal constraints;
a trace collector for tracking the activation levels
the behaviors;
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Fig. 5. Fault detection and isolation by a fuzzy expert system: the
linear temporal logic (LTL) approach.

• a fault detection module for checking a temporal
fuzzy logic formula over the current trace to deter-
mine whether or not it violates the formula; and

• a fault isolation module that evaluates a trace of the
temporal logic verification process to determine the
type of fault.

In contrary to many other expert systems the fault
detection and isolation is not based on the current state
solely. The use of LTL also allows notions of time and
time intervals, and therefore a sequence of measures
can be analysed. The activation levels of the behav-
iors are filtered to reduce noise usingordered weighted
average (OWA) operators[83].

Work that is not directly focused on fault detection
and isolation, but still related to execution monitoring is
the work on the Dual Dynamics & Planning (DD&P)
robot control architecture, see[35,72]. This work is
related to execution monitoring since the DD&P ar-
chitecture has an interesting technique for extracting
information about the robot and its performance. This
particular information, that is, symbolic ground facts,
that are given to the world-model, are obtained by ana-
lyzing the activation levels of the behaviors. Four spe-
cific features are extracted from the activations levels
over time[71]: rising edge, falling edge, high level,
and low level. The key idea in extracting facts from
activation levels is to consider patterns of qualitative
activations of several behaviors that occur within the
same interval of time. A set of rules, namedchroni-
c tain
g al.
T ula-
t

4.3. Artificial neural networks

Artificial neural networks (ANN) were motivated
from the study of the human brain, which is made up
of millions of interconnected neurons[33]. Similar to
the data-driven approaches discussed earlier, ANNs
are most useful when it is hard or even impossible
to create mathematical models of the monitored sys-
tem. The main drawback is that their performance is
highly dependent on the amount and quality of the input
data.

Several authors have applied ANNs to fault detec-
tion and isolation. In[54] a comparison between ra-
dial basis function networks and the classical param-
eter estimation approach is made. Their results show
that the classical methods can compete if the assump-
tions for the structure are valid. However, if in practical
applications the structure is not known the radial basis
function network performs much better. In recent work
presented in[87] it is shown that a combination of sev-
eral neural networks can perform better than a single
network.

In more recent work on the DD&P robot control ar-
chitecture, discussed above, an ANN has been applied
for the process of extracting facts from the activation
levels[34]. In this work it is shown that the chronicle
definitions can be learned. Here anecho state network,
which is a particular type of recurrent neural network
is used for learning. The method is demonstrated on
data from a mobile robot simulator.
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le definitions, are used to determine whether a cer
round fact holds or not within a given time interv
he method is evaluated on a mobile robot in sim

ion.
Also the work on model-free execution monitor
nvolves artificial neural networks. In[62] the use o
NNs has been evaluated in a hierarchical execu
onitor. This monitor incorporates two artificial neu
etworks: one for fault detection and one for fault

ation. In Fig. 6 the hierarchical model-free execut
onitor is shown. The approach is successfully te

n numerous experiments both on a real mobile r
nd in simulation.

As mentioned, the main drawback using learn
pproaches for execution monitoring is that the tr

ng data must provide an adequate coverage of a
ault situations. Unfortunately, it is not always feas
o force the robot into all known fault situations, a
ome of these situations can be catastrophic for e
he robot or its operating environment. An interes
dea to overcome this drawback is “learning from s
lation” [63] which lets the execution monitor lea
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Fig. 6. Schema of the hierarchical model-free execution monitoring system. Fault detection and isolation are performed by two separated pattern
recognition systems.

the fault classes safely in simulation, and then use the
system to monitor a real robot.

Artificial neural networks can also be combined
with other approaches. For example in[64] a multi-
layer perceptron feed forward network is used for fault
detection and a fuzzy expert system is used for fault
isolation. This monitor is evaluated on a simulated au-
tonomous underwater vehicle (AUV).

5. Discussion

This work is an overview of existing execution mon-
itoring systems applied to robotics, particularly mobile
robotics. From the field of industrial control we have
learned that execution monitoring can be categorized
into one or several of three classes[11]: analytical, data-
driven, and knowledge-based. This categorization has
been used throughout the survey of the different mon-
itoring systems.

Analytical approaches rely on the concept analytical
redundancy. This means that two analytically generated
quantities, obtained from different sets of variables are
compared. These quantities are generated with the help
of models, that are often basic models from physics,
that describe the system’s behavior. The analytical ap-
proaches are the most frequently used approaches for
fault detection in robotics, including both robot ma-
nipulators and mobile robotics. Analytical monitoring
can be divided into: parameter estimation, parity rela-
t om-
m ap-

proaches are preferable when the monitored system is
well understood and the amount of uncertainty is lim-
ited. Many parts within a robotic system are designed
with the help of basic models and this knowledge might
as well be used when designing the monitoring system.
For example, the analytical approaches are well suited
to detect faults in a wheel motor controller, such as a
broken driving shaft, or a broken wheel encoder. The
main weakness of this approach is the assumption that
a precise mathematical model of the system is avail-
able. In many complex systems it is difficult, or even
impossible to create such models. This concerns, for
example, behavior-based controllers where the combi-
nation of different reactive behaviors may produce an
overall behavior, sometimes called anemergent behav-
ior, that is very difficult to model.

Data-driven approaches do not rely on analytical
models. Instead, the information used for monitoring is
derived directly from input data. The decision making
is often based on statistical methods. The application
of statistical theory to execution monitoring relies on
the assumption that the characteristics of the data vari-
ations are relatively unchanged unless a fault occurs
in the system. Data-driven monitoring can be divided
into two groups referring to the number of variables
measured by the monitor, that is, univariate and multi-
variate statistical monitoring. The main strengths of the
data-driven approaches are their robustness to uncer-
tainty, and their ability to transform high-dimensional
data into a lower dimension space; in which the most
i ap-
p are
ions, and observers, where the latter is the most c
on approach for analytical monitoring. Analytical
mportant information is captured. Therefore, these
roaches are well suited when several variables
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measured and their connection to the system behavior
is not fully understood. An example of a fault that could
be detected and isolated by the data-driven approach is
a low battery charge level that causes increased noise
in the sonar readings. The main drawback using this
approach is that the performance is highly dependent
on the amount and quality of the input data. If suffi-
cient data is not available to accurately estimate the
mean vector and covariance matrix, this will result in
suboptimal fault detection and isolation.

The knowledge-based approaches are not distinct
from the former two approaches since both analyt-
ical and data-driven approaches apply to this class.
Knowledge-based monitoring can be divided into three
categories: causal analysis, expert systems, and arti-
ficial neural networks. The main strength using the
knowledge-based approaches is probably their ability
to combine analytical and data-driven approaches in a
hybrid monitoring system. In other words, these ap-
proaches are well suited to monitor complex systems,
at several levels of abstraction, such as autonomous
mobile robotics.

A common problem within the mobile robotics field
is that many ideas rely heavily on a specific system.
Therefore, it is hard to compare the performance of
different approaches. Even though some researchers
have raised the issue and claimed the need for com-
mon domains or benchmark systems, see for example
[55], very few have prioritized this need and tried to
create them. Nevertheless, if the same quantifiable cri-
t e of
a rent
i llow-
i ecu-
t
t heir
a e
p rrors,
w
i

on-
i hin
r eled,
c h or
a Only
i ad-
e oach
i im.

In the work on monitoring in the New Millennium
project by NASA, a model-based approach was de-
veloped. This observer-based monitor performed very
well when applied to an autonomous space shuttle. The
different states of a space shuttle are well known and
the number of unexpected events limited. When the
same monitor later on was evaluated on an autonomous
rover, the performance was not overwhelming. Instead,
a multivariate statistical approach was introduced to
cope with all the uncertainties involved in the task of
moving across the surface of a planet[78].

One explanation of why analytical monitoring is
the most common approach could be the superior un-
derstanding of the underlying concepts. An analytical
model created from first principles is easier to maintain,
compared to black box approaches where the informa-
tion is hidden. Note, that this applies only for people
that have knowledge in the language that is used to de-
scribe the models. The robot user do not necessarily
have knowledge in the formal language that is required
for model compilation. Although most monitoring sys-
tems applied to robotics are based on analytical redun-
dancy, the other approaches have some complemen-
tary advantages. Therefore, data-driven approaches to-
gether with knowledge-based approaches need to be
further studied.
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[72] F. Scḧonherr, J. Hertzberg, The DD&P robot control archi-
tecture: a preliminary report. in: M. Beetz, J. Hertzberg, M.
Ghallab, M. Pollack (Eds.), Advances in Plan-Based Control
of Robotic Agents, number 2466 in Lecture Notes in Artifi-
cial Intelligence, Springer-Verlag, Berlin, Germany, 2002, pp.
249–269

[73] R.G. Simmons, D. Apfelbaum, A task description language for
robot control, in: Proceedings of the IEEE International Con-
ference on Intelligent Robots and Systems (IROS), Victoria,
BC, Canada, 1998, pp. 1931–1937.

[74] R.G. Simmons, J. Fernandez, R. Goodwin, S. Koenig, J.
O’Sullivan, Lessons learned from Xavier, IEEE Robot. Autom.
Mag. 7 (2) (2000) 33–39.

[75] M. Soika, Sensor failure detection framework for autonomous
on-

oble,

[ nk,
GY
0.

[ on-
ed-
lli-
998,

[ fault
.

[ tion
fer-
CA,

[80] D.E. Wilkins, T.J. Lee, P. Berry, Interactive execution mon-
itoring of agent teams, J. Artif. Intell. Res. 18 (2003) 217–
261.

[81] B.C. Williams, P.P. Nayak, A model-based approach to reac-
tive self-configuring systems, in: Proceedings of the National
Conference on Artificial Intelligence (AAAI), Cambridge, MA,
USA, 1996, pp. 971–978.

[82] A.S. Willsky, A survey of design methods for failure detection
in dynamic systems, Automatica 12 (6) (1976) 601–611.

[83] R.R. Yager, On ordered weighted averaging aggregation oper-
ators in multicriteria decisionmaking, IEEE Trans. Syst. Man
Cybern. 18 (1) (1988) 183–190.

[84] B. Yan, T. Zhang, C. Xie, Fuzzy expert system for fault di-
agnosis of robotic, in: Proceedings of the World Congress
on Intelligent Control and Automation, 2002, pp. 445–
449.

[85] H. Ye, P. Zhang, S.X. Ding, G.Z. Wang, A time-frequency
domain fault detection approach based on parity relation and
wavelet transform, in: Proceedings of the IEEE International
Conference on Decision and Control, Sydney, Australia, 2000,
pp. 4156–4161.

[86] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility,
Fuzzy Set. Syst. 1 (1) (1978) 3–28.

[87] J. Zhang, Improved on-line process fault diagnosis using
stacked neural networks, in: Proceedings of the IEEE Inter-
national Conference on Control Applications, Glasgow, UK,
2002, pp. 689–694.

[88] J. Zhang, M. Xu, S. Xu, Fault detection and classification
through multivariate statistical techniques, in: Proceedings of
the American Control Conference, Evanston, IL, USA, 1995,
pp. 751–755.

[89] K. Zita Haigh, M.M. Veloso, Interleaving planning and
robot execution for asynchronous user requests, in: Proceed-
ings of the IEEE International Conference on Intelligent
Robots and Systems (IROS), Osaka, Japan, 1996, pp. 148–

ing
nfer-
itts-

g,
de-
a-
m

95.
m-

,
au-

on-
mobile robots, in: Proceedings of the IEEE International C
ference on Intelligent Robots and Systems (IROS), Gren
France, 1997, pp. 1735–1740.

76] M.M. Veloso, J. Carbonell, M.A. Pérez, D. Borrajo, E. Fi
J. Blythe, Integrating planning and learning: the PRODI
architecture, J. Exp. Theor. Artif. Intell. 7 (1) (1995) 81–12

77] M.M. Veloso, M.E. Pollack, M.T. Cox, Rationale-based m
itoring for planning in dynamic environments, in: Proce
ings of the International Conference on Artificial Inte
gence Planning Systems (AIPS), Pittsburgh, PA, USA, 1
pp. 171–179.

78] V. Verma, G. Gordon, R.G. Simmons, S. Thrun, Real-time
diagnosis, IEEE Robot. Autom. Mag. 11 (2) (2004) 56–66

79] R. Washington, On-board real-time state and fault identifica
for rovers, in: Proceedings of the IEEE International Con
ence on Robotics and Automation (ICRA), San Francisco,
USA, 2000, pp. 1175–1181.
155.
[90] K. Zita Haigh, M.M. Veloso, Planning, execution and learn

in a robotic agent, in: Proceedings of the International Co
ence on Artificial Intelligence Planning Systems (AIPS), P
burgh, PA, USA, 1998, pp. 120–127.

Ola Pettersson was born in Falkenber
Sweden, in 1972. He received his MS
gree in Electrical Engineering (specializ
tion in photonics and image analysis) fro
the Halmstad University, Sweden, in 19
In 2004 he received his PhD degree in Co
puter Science from thëOrebro University
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