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Abstract. Ambient environments which integrate a number of sensing devices and actuators intended for use by human users
need to be able to express knowledge about objects, their functions and their properties to assist in the performance of everyday
tasks. For this to occur perceptual data must be grounded to symbolic information that in its turn can be used in the communica-
tion with the human. For symbolic information to be meaningful it should be part of a rich knowledge base that includes an on-
tology of concepts and common sense. In this work we present an integration between ResearchCyc and an anchoring framework
that mediates the connection between the perceptual information in an intelligent home environment and the reasoning system.
Through simple dialogues we validate how objects placed in the home environment are grounded by a network of sensors and
made available to a larger KB where reasoning is exploited. This first integration work is a step towards integrating the richness
of a KRR system developed over many years in isolation, with a physically embedded intelligent system.
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1. Introduction

In the past years we have seen a great emphasis on
research that focuses on robotic assistants and smart
homes helping users to perform more and more com-
plex tasks and everyday activities. We can see emerg-
ing paradigms where robotic devices, simple sensors
pervasively embedded in everyday environments and
humans communicate and cooperate. Such paradigms
include ubiquitous robotic systems, symbiotic sys-
tems, intelligent spaces and robot ecologies and com-
bine visions from autonomous robotics and ambient
intelligence to integrate both simple and complex de-
vices. The next step in embedding those devices into
our everyday lives, will require that they can be op-
erated by non-experts that have no knowledge about
their internal functioning. Thus, the key problem lies in
enabling the interaction between such systems and the
human. One intuitive solution is communication on the
conceptual level, through natural language. With this
kind of communication we meet two secondary prob-
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lems: establishing the required amount of background
knowledge in order to successfully enable communica-
tion through natural language, and how to ground per-
ceptual information into background knowledge, re-
ferred to, as “Symbol Grounding Problem” [23]. If a
smart home or robotic assistant will employ a success-
ful natural language dialogue it will certainly use con-
cepts to refer to things and experiences in the world
and these concepts must be grounded to perceptual
data that refer to these objects. Since our intelligent
systems are dedicated to operate and communicate in
the real world, they need access to general common-
sense knowledge. In this paper we address a frame-
work which deploys a knowledge representation and
reasoning system within a symbiotic system. A key
feature of the system is the integration of the KRR to-
gether with information coming from physical percep-
tual data originating from a real smart home which in-
cludes a robotic assistant. This integration facilitates
the mapping of non semantically structured percep-
tual information into pieces of knowledge that con-
form with a shared vocabulary (ontology). It allows for
the information to be hierarchically structured, defin-
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ing concepts at different levels of abstraction. Further-
more, information can be exchanged and queried be-
tween agents including humans. We focus mostly, but
not only, on the iconic representation [23]. While com-
munication between artificial agents on the perceptual
level has been studied in the recent past [24], we are
going to study communication on the conceptual level
which can be used by both artificial agents and hu-
mans simultaneously. In past research we have seen at-
tempts to model or integrate commonsense knowledge
to mobile robots, which were theoretical [13] or ad-
dressed a small subset of commonsense information in
real world scenarios [14]. Recently we see improve-
ments as this subject is brought back to life for the pur-
pose of Visual Scene Detection and Interpretation [12]
and practical and grounded knowledge representation
systems using commonsense information [15].

Generally the integration of KR&R with robotic
systems has been an increasingly interesting topic for
cognitive robotics. Examples are found in semantic
mapping [1], improving planning and control aspects
[2], and most notably HRI systems [3]. Typically, such
systems have used small KR&R systems, tailored to
the specific application at hand. We investigate the pos-
sibility to include a fully fledged KR&R system that
has been developed independently of the intended ap-
plication and has been maintained over an extended
period of time. Finally a common observation for sys-
tems dealing with symbol grounding is that the major-
ity of works disregard a generic solution to physical
symbol grounding by hard coding ad hoc solutions or
limiting the domain to a very small subset (i.e. address-
ing only the spatial relations, or only the topological
localization etc.). In this work since we are interested
in integrating a KRR system with the perceptual data
lying in a symbiotic system which may include a num-
ber of heterogeneous sensors and complex networks
of sensors (i.e. a robotic system) we use an anchoring
framework, which creates and maintains in time the
connection between the symbolic system and the per-
ceptual data corresponding to physical objects. A fur-
ther advantage exploited in this work is the use of com-
mon sense reasoning which is available in the KR&R
components. In addition to enabling queries from the
human users this common sense knowledge is used to
reason about objects, their properties and functionali-
ties.

The overall system is evaluated in a testbed consist-
ing of a number of sensors, a mobile robot and a hu-
man user. It should be emphasized that the presented
work focuses on the system integration and is built

Fig. 1. Overview of the implemented robotic system for knowledge
based perceptual anchoring. Arrows indicate the flow of informa-
tion.

upon a number of existing components which have
been tested previously in isolation. Thus the key nov-
elty is the integration of the components and the vali-
dation of the complete system in a real home-like en-
vironment.

2. System overview

The implemented architecture lies within our re-
alization of a smart environment called PEIS- Home
(PEIS stands for Physically Embedded Intelligent Sys-
tems) which is described in Section 3. The system is
divided in three main layers of computation as de-
picted in Fig. 1. Namely there is a perceptual layer, a
symbol grounding and maintenance layer, and finally
the Knowledge Representation and Reasoning Layer.
Each layer can be conceived as a separate cognitive
ability of the robotic assistant or smart home. In the
perceptual layer, data originating from hardware sen-
sors are handled as groups, and are filtered, according
to their complexity, by appropriate feature extraction
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and matching algorithms. For example, one percep-
tual group includes the sensors (camera, rangefinder,
sonars, etc.) that are mounted on the mobile robot,
while another perceptual group concerns the sensors
that are located in each room of the smart home (per-
son recognition / tracking, temperature / luminosity
/ humidity sensors, cameras etc.). Information from
all the perceptual groups, is then fed into the symbol
grounding layer. The mechanism we adopt for sym-
bol grounding is based on perceptual anchoring [8,9]
which is responsible for three functions. It grounds
each piece of perceptual information into its symbolic
counterpart, while then it encodes the symbolic trans-
lations into a data structure that denotes a physical en-
tity. Finally it manages all those encodings in time.
In the knowledge representation layer which contains
a commonsense knowledge base (KB) and inference
mechanisms, all the grounded information from the
symbol grounding layer, is instantiated into concepts
from the KB. Finally this information will be used,
through a simple NL system to facilitate a dialogue
with the human user.

2.1. Perception

The perceptual layers consist of a number of hetero-
geneous sensors organized in perceptual groups which
publish perceptual information to the PEIS communi-
cation middleware and are used for further processing.
As mentioned in the introduction we heavily rely on
visual processing (iconic representation) to be able to
extract later on semantically rich information about the
environment. For visual processing, the experiments
presented adopts a SIFT-based approach [5]. We de-
veloped an algorithm which processes the image feeds
from any video source lying within the PEIS-Home
(either the robot’s camera or any of the ceiling cam-
eras). It is constituted by two components, the trainer
and the recognizer. The trainer can handle multiple im-
ages per object and ultimately constructs a hierarchi-
cal database file with all the SIFT features extracted
from the input images. In the structure of the trained
database file one may find the features indexed by ob-
jects, models and bags of features (Fig. 2). For ex-
ample, for an object that consists of several pictures
from different viewpoints, a new object category is
created that includes several models (essentially view-
points), with each model containing bags of SIFT fea-
tures from those viewpoints. With this technique, over-
lapping SIFT key-points were combined under the cor-
responding most general model, allowing for recogni-

Fig. 2. Trained Database File.

Fig. 3. Percepts formulation in the Perceptual Layer.

tion of objects irrespective of viewpoint. Objects are
recognized by processing the video feed in a frame by
frame basis, extracting the SIFT features from the cam-
era image, and then matching those features against the
trained database using a κ-d tree matching algorithm.

The object recognizer is able to recognize multiple
objects in real-time, and in each time cycle, the percep-
tual signatures (explained in Section 2.2.1) from the
recognized objects are published into the communi-
cation middleware. A perceptual signature, includes a
latest copy (cropped area) of the corresponding object;
its unique identifier and information about the scale,
orientation, reference position, error, and probability
of match. This is the driving force or stimulus to per-
ceive the objects in the environment and the output is
then available to the anchoring component for further
information extraction. Figure 3 shows an example of
the data contained in the perceptual system.

For localization and navigation used by the robot
perceptual group (shown on the left of the perceptual
layer), a number of components are networked. We use
standard localization techniques and the detail on the
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implementation of these components are omitted. The
other perceptual group which regards the smart home
includes again the same visual processing algorithm
explained above, and other sensors located in the envi-
ronment. In the case studies (Section 3) we use a per-
son tracking system which provides the position of the
human in the environment. We also use small sensor
devices in each room (Called Tmotes) which provide
luminance, temperature and humidity readings.

2.2. Physical symbol grounding

The grounding of perceptual data presented in this
work concern mainly household objects and in the pre-
sented system we use Perceptual Anchoring [9] to cre-
ate and maintain in time the correspondence between
symbols and percepts that refer to the same physical
object. These modules consist of a grounding mod-
ule, an anchor management, and memory manage-
ment. The latter component is a novel addition which
is used to facilitate the management of information to
the knowledge base synchronizer that interfaces with
the KR&R. More detail on these modules are given in
the following Sections.

2.2.1. Perceptual anchoring
The task of anchoring is to create and maintain in

time the correspondence between symbols and per-
cepts that refer to the same physical object. This cor-
respondence is reified in a data structure α(t), called
an anchor. It is indexed by time as the perceptual sys-
tem continuously generates new percepts; and the cre-
ated links are dynamic, since the same symbol may be
connected to new percepts every time a new observa-
tion of the corresponding object is acquired. So at each
time instance t, α(t) contains a symbol identifying that
object, a percept generated by the latest observation
of the object, and a perceptual signature meant to pro-
vide the (best) estimate of the values of the observable
properties of the object.

The main parts of anchoring are:

– A symbol system including a set X = {x1, x2, . . .}
of individual symbols (variables and constants), a
set P = {p1, p2, . . .} of predicate symbols, and
an inference mechanism. In this work, the sym-
bolic system is the Cyc implementation.

– A perceptual system including a set Π = {π1, π2,
. . .} of possible percepts, a set Φ = {φ1, φ2, . . .}
of attributes, and perceptual routines. A percept
is a structured collection of measurements as-
sumed to originate from the same physical ob-

Fig. 4. Grounding of the perceptual signature to formulate an anchor
in the perceptual anchoring layer.

ject; an attribute φi is a measurable property of
percepts with values in the domain D(φi). Let
D(Φ) =

⋃
φ∈Φ D(φ).

– A predicate grounding relation g ⊆ P × Φ ×
D(Φ), which embodies the correspondence be-
tween predicates and values of measurable at-
tributes. The relation g maps a certain predicate
to compatible attribute values.

The following definitions allow to characterize ob-
jects in terms of their (symbolic and perceptual) prop-
erties:

– A symbolic description σ is a set of predicates
from P .

– A perceptual signature γ : Φ �→ D(Φ) is a partial
mapping from attributes to attribute values.

The predicate grounding relation g is responsible for
encoding the attribute values compatible with certain
predicate symbols, while anchoring concerns encoding
those relations with certain individuals’ (object) sym-
bols.

An example from the symbol system may indicate
that in the individual symbols’ set X there exist sym-
bols such as {cup − 22, cup − 12, garbageCan −
2. . .} while the predicate symbols’ set P may contain
{small, big, red, black . . .}. In the perceptual system,
the set Π indicates percepts as {Image, HSV, Area,

Position . . .}, which correspond to values from the
attributes’ set Φ. Here it is important to mention that
the predicate grounding relation g is responsible for
encoding the attribute values compatible with certain
predicate symbols, while anchoring concerns encoding
those relations with certain individuals’ (object) sym-
bols.
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2.2.2. Grounding techniques
To ground perceptual signatures from different sens-

ing modalities an interface that allows to connect var-
ious grounding plugins together, is used where each
plugin implements its own grounding relation. For the
experiments of the current work, we address five dif-
ferent grounders regarding the input from the visual
processing component that formulate a sufficient sym-
bolic description of the objects located in the environ-
ment, from their perceptual signatures. Those are ob-
ject category, color, location, spatial relations and visi-
bility grounding. For color grounding we use a n-pixel
random sampling algorithm applied to the segmented
image of the recognized object, averaging the selected
pixels, while the grounding relation maps the result be-
tween twelve classes of colors (1. Red, 2. Green, 3.
Yellow, 4. Blue, 5. Black, 6. White, 7. Pink, 8. Cyan, 9.
Gray, 10. Orange, 11. Brown, 12. Purple) that can be
accurately differentiated by people with standard vi-
sion [6]. The location is derived by correlating the po-
sition of the robot or camera (using localization per-
ceptual data) to the semantic map that is provided to
the system. The object category is taken directly from
the object recognition module as it is included in the
unique identifier of the percept. An example of the an-
choring system is illustrated in Fig. 4.

Spatial relations constitute an important symbolic
description, because they allow humans to distinguish
objects by their location with respect to other objects,
possibly identical, and plays an important role when it
comes to human-robot interaction. Two classes of bi-
nary spatial relations between a reference object and
the located object are considered: the distance (topo-
logical) relations “at” and “near” and the directional
(projective) relations “front of”, “behind”, “right” and
“left”. For reasons of simplicity we assume a deictic
frame of reference with an egocentric origin coinciding
with the robot platform. For the computation and eval-
uation of these spatial relations within the grounder
plugin, we use the model presented in [7]. The com-
putation of the spatial relations in the anchoring mod-
ule have been validated previously in [8]. We arbitrar-
ily assume that objects not observed at some point in
time, do not change their location. Lastly, visibility is
grounded by default as true during grounding, since all
the percepts generated by recognized objects are visi-
ble at the time. This attribute changes in the functional-
ity of the anchoring management described in the Sec-
tion 2.3.

For the Tmotes of the smart home, fuzzy grounders
for grounding temperature luminance and humidity are

used. We use the information from the person tracking
system together with the symbolic map provided to the
location grounder.

2.3. Management & perceptual memory

The Anchoring Manager, is responsible for dis-
tributing the recently grounded anchor candidates to
the rest of the system. This is achieved by extending
and modifying the anchoring’s functional part orig-
inally proposed in [9]. The anchoring process con-
cerns bottom up and top down information acquisi-
tion through the following functionalities: find, acquire
track and reacquire. Find is used for searching through
the anchoring space. It searches both the symbolic de-
scriptions and perceptual signatures. It can be triggered
by the grounding in order to search if there is already
an anchor created for the specific grounded object, or
similarly it can be invoked by a user command trying
to identify an anchor against its symbolic description
(e.g. “red” & “cup”). If we receive a candidate anchor
which does not match any existing anchor, acquire is
used to initiate a new anchor for this candidate. Else, if
the candidate matches an existing anchor, track assures
that the perceptual signature pointed to by the existing
anchor is the most recent and adequate perceptual rep-
resentation of the object, by updating the perceptual
signature with the one from the candidate anchor.

The novel functions is the perceptual memory man-
agement. It consists of two memory structures, one for
storing anchors currently perceived by an active per-
ceptual agent (e.g. robot) (working memory) and an-
other one which stores previously perceived anchors
(archive memory). If, for example, the robot is not
perceiving an object anymore, the anchor of the cor-
responding object is marked as not visible and then
archived (archive function). While if we happen to
identify an object that we have previously anchored,
the reacquire function brings up the corresponding an-
chor from the archive memory.

2.4. Commonsense knowledge representation and
reasoning

A central contribution in this work is the KR&R and
the necessary components to interface with the anchor-
ing/grounding processes. The objective of this compu-
tational layer, is to transform the grounded symbolic
information that exists in the Perceptual Anchoring
layer, into hierarchically structured semantic informa-
tion defining concepts at different levels of abstraction
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conforming with a shared vocabulary (Ontology). This
information can be exchanged between agents, includ-
ing humans without being dependent on an interpre-
tation context while allowing reasoning. The role of
the of the KR&R system is to maintain a world model
which consists of the collection of the semantic in-
formation perceived by the robotic assistant, and the
smart home. The commonsense KR&R system used
in this work is Cyc, which contains roughly 3 million
assertions about 250,000 concepts. Operations (such
as assertions, retractions, modifications and queries)
are stated using Cyc’s formal language, CycL. Essen-
tially CycL is an extension to second order predicate
calculus, which is unambiguous and enable mechani-
cal reasoning. The extensions also include features of
higher order logics (e.g. quantification over predicates,
functions, and sentences) that allow higher order asser-
tions. Such a system, that rests on a large scale gen-
eral purpose knowledge base, can potentially manage
tasks that require world knowledge (or commonsense),
the knowledge that every person assumes his neighbor
also possess.

2.4.1. Knowledge base
The main challenge of integrating a large KR&R

like Cyc is to be able to synchronize the information
with the perceptual data coming from multiple sen-
sors, which is inherently subject to incompleteness,
glitches, and errors. The anchoring module provides a
stable symbolic information despite fluctuating quan-
titative data through the grounding plugins. Nonethe-
less, instances of objects must be created in Cyc and
as objects can be dynamic (e.g. in the case of chang-
ing properties) proper updating of information needs
to be managed. Ultimately, to enable the synchroniza-
tion between the KRR and anchoring layers three as-
pects are considered: defining anchoring in the KRR,
handling of assertions, and handling of ambiguities.

It is important to define the context of anchoring as
Cyc is not consistent globally but rather tries to be con-
sistent locally by exploiting the use of different con-
texts which are expressed as MicroTheories. Through
the Anchoring MicroTheory it is possible to connect
concepts about objects that are currently present in
the anchoring module, to the structured hierarchical
knowledge in Cyc and concurrently inherit the com-
mon sense reasoning about this knowledge. For in-
stance, if the location of “cup” stored in the anchor,
is the Kitchen, then this object and the kitchen are in-
stantiated into Cyc, inheriting all the properties related
to the generalized concepts of the “kitchen” and the

“cup”, such as Man Made Thing or Humanly Occupied
Spatial Object.

To enable the Anchoring MicroTheory (Mt), the fol-
lowing formulae were asserted:

1. Anchoring Mt is a general Cyc microtheory.
2. Everything true in “things known”, independent

of context, is also true in Anchoring Mt.
3. Everything true in Cyc’s knowledge of general

truths is also true in Anchoring Mt.
4. If through experience an intelligent agent per-

ceives a SENTENCE, then that SENTENCE is a
True Sentence.

5. If through experience an intelligent agent per-
ceives a SENTENCE then that intelligent agent
knows that SENTENCE.

6. If some localized spatial thing is located in some
other localized spatial thing LOCAL and some
other spatial thing REGION contains LOCAL,
then that localized spatial thing is located in RE-
GION.

Points 2 &3 are used in order to inherit all that Cyc-
knows about the world. Point 4 (Second Order Asser-
tion) is used to make the agent’s perception true inside
the AnchoringMt. In addition, it is also necessary to
assert the concept of an agent. This has been done by
initially creating the agent given a specific name (e.g.
Self) and specifying a number of is-A assertions about
the agent such as:

– Self is a localized spatial thing.
– Self is a tangible agent.
– Self is a perceptual agent.

Furthermore, the concept of an anchor and correspond-
ing statements were defined (e.g. an anchor is a data
structure, it indicates some instance of an object, which
has some properties like color, location, spatial rela-
tions, . . . ).

2.4.2. Knowledge synchronization
To synchronize the knowledge in Cyc with the per-

ceptual data, instances of the anchored objects present
in both working and archive memory are asserted. The
knowledge synchronization’s role keep the Cyc sym-
bolic system coherent with the symbolic descriptions
of each anchor. This is done by translating the sym-
bolic description of each anchor into a set of local for-
mulae that state the agent’s perception about the ob-
ject. Figure 5, exemplifies how assertions are made.
When a particular predicate of the symbolic descrip-
tion changes (e.g. when the location of an object is in



M. Daoutis et al. / Grounding commonsense knowledge in intelligent systems 317

Fig. 5. Transformation of the anchor’s symbolic part, to logic formulae assertions about the agent’s perception of the corresponding anchor
(object).

another room), first an unassertion of the predicate is
made, and a new assertion containing the updated in-
formation is performed.

Ambiguities may arise during the synchroniza-
tion process and are resolved using the denotation
tool interactively with the user. The denotation tool
is an interactive step during the grounding process
where the user is asked to disambiguate the sym-
bol that is grounded between all the concepts in
the KB that denote this symbol. This is exempli-
fied here. As an example, when the anchoring of a
“flower” triggers a KB assertion about this flower, an
ambiguity will arise as Cyc contains multiple con-
cepts denoting the term “Flower”; the possible options
are: CutFlower, Flower-BotanicalPart,
FlowerDevelopmentEvent, FloweryPlant.
The user is asked to select between all those Concepts,
which are sorted by the probability of relevance.

Another aspect to synchronize is the information
about the visibility of the object. This is important
as the physically embedded agent still needs to main-
tain knowledge about an object, despite that the corre-
sponding perceptual information is not currently avail-
able to the agent. For example the robot still needs to
maintain the knowledge that “a cup is located in the
kitchen”, despite that the “cup” is outside its current
field of view. This is achieved by 2nd order rule as-
sertions as stated in Section 2.4.1 and an example is
shown in the experiments in Table 2.

2.5. NL communication

To combine Cyc’s natural language capabilities and
enhance the communication with the user we allow

Table 1

NL Template Examples

-What do you see ?

query:(sees AGENT ?OBJECT)

-Where is the red cup ?

query:(objectFoundInLocation

(and (isa ?CUP Cup)

(objectHasColor ?CUP RedColor)

?WHERE))

-Do you know that the green flower is located in the kitchen?

query:(knows AGENT

(and (isa ?FLOWER Flower)

(objectHasColor ?FLOWER GreenColor)

(objectFoundInLocation ?FLOWER KITCHEN)))

Cyc to translate the results of queries or inferences,
into natural language. In addition a console based
graphical user interface is created allowing the user to
type in questions or complementary assertions in nat-
ural language which are parsed by a template based
NL parser, and in turn accesses Cyc to perform the re-
quired operations. All the occurrences of the the word
‘you’ are reformulated to the agent’s name. The NL
parser is able to capture 15 categories of what ques-
tions, 19 categories of who questions, 7 categories of is
questions and 18 other categories. In addition there are
11 other possible commands which include assertion
types (set, is-A, generalization, assert, make), informa-
tional types (get, complete, explain, translate, guess-
denote), retraction types (retract, delete). Some exam-
ples of how this translation are given in Table 1.

While from a technical point of view, communi-
cation occurs between the human user and the PEIS-
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Fig. 6. From left to right. Sample training images of objects. The robot’s perceptual space with the visually recognized objects. Similarly, ceiling
camera’s perceptual space. The PEIS-home Symbolic Map.

Ecology, it is presented to the user as an interaction
between the user and the robot, as this interaction has
shown to facilitate a better HRI.

3. Case studies

The implemented architecture is built upon a com-
munication framework that allows the dynamic con-
nection between the different components described in
the previous sections. A component is any computer-
ized system interacting with the environment through
sensors and/or actuators and including some degree of
“intelligence”. Each component is called a PEIS or
physically embedded intelligent system and can be as
simple as a smart toaster and as complex as a hu-
manoid robot. A PEIS-Ecology is the collection of
all those components. In our realization of a PEIS-
Ecology, the PEIS relies on a distributed middleware
to communicate and cooperate. This PEIS-middleware
implements a distributed tuple-space on a P2P net-
work: PEIS exchange information by publishing tuples
and subscribing to tuples, which are transparently dis-
tributed by the middleware. Each PEIS also provides
a set of standard tuples, e.g., to announce its physical
appearance or the functionalities that it can provide.

As part of the testbed, we use a physical facility,
called the PEIS-home, which looks like a typical bach-
elor apartment of about 25m2. It consists of a liv-
ing room, a bedroom and a small kitchen as shown in
the Fig. 6 (right). The PEIS-Home is equipped with
communication and computation infrastructure along
with a number of sensors like camera’s and localiza-
tion components. In our ecology there is an interactive
robotic system based on an ActiveMedia PeopleBot
platform for indoor research. In addition to the usual
sensors, the robot is equipped with a SICK LMS200
laser range finder and with a Sony PTZ color camera.

3.1. Perceptual information & properties

We initially presented the robot with 15 objects
while capturing 2 to 5 training images per object from
different viewpoints. Some training images samples
are shown in Fig. 6 (left). It is important to mention
that the robot recognizes instances of objects and not
object categories. We placed those objects around the
PEIS-home in a random manner, either close or far,
covering a great amount of different combinations of
spatial relations. We then allowed the robot to navi-
gate around the environment so as to recognize and
anchor those objects. We then allowed the human to
communicate with the system, by typing into the con-
sole based graphical user interface, questions (related
to robot’s perceptions, or commonsense), or commu-
nication commands in natural language according to
the NL part described in Section 2.5. An excerpt of the
dialogue that reflects perceptual information from the
mobile robot and the environment is presented in Ta-
ble 2. At the point where this dialogue took place, the
robot was located in the kitchen looking at a milk box,
a washing liquid and some tea, as indicated in Fig. 6
(2nd picture) which is the output of the object recogni-
tion component. We are also able to use the visual sen-
sors which are located in the ceiling and can observe
things that the robot would not be able to observe be-
cause they are too large1 or occluded. Another instance
of the object recognizer was running on the large ob-
jects from the PEIS-home (e.g. television set, couch,
table, sink, etc.). Through the knowledge base asser-
tions which pertained a larger collection of objects of
the environment, the robot is able to compensate for its
limited ability of perception.

1Due to PEIS-home space restrictions the robot is not able to po-
sition it self far enough in order to observe the whole couch or the
whole television set.
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Table 2

Excerpt from the dialogue between the human and the Anchoring
Robot

User > What do you see?

Self > I perceive a Milk Box, a Washing

Liquid and a Tea.

User > Where are you?

Self > I am located in the Kitchen.

User > What color is the Washing Liquid?

Self > Green.

User > Where is the Television Set?

Self > The Television Set is located in the

LivingRoom.

User > What Color is Television Set?

Self > Black.

User > What is the Temperature in the

Kitchen?

Self > The Temperature in the Kitchen is

21C.

Table 3

Qualitative Spatial Relations dialogue

User > Where is the Pink Flower?

Self > The Pink Flower is located in the

Kitchen, to the left of

Coffee, to the Left of

Soup, (...) and to the right of Me.

User > Where is the medicine?

Self > The Anti Inflammation Gel in front

of Me, or the Painkiller to the

right of Me?

3.2. Qualitative spatial relations

Humans heavily use qualitative descriptions about
the spatial relations of the objects they communi-
cate. The perceptual grounded knowledge in the KB
contains also the spatial relations of each object. In
this scenario we demonstrate that spatial relations like
“nFrontOf”, “Behind”, “ToTheLeft” are correctly gen-
erated by the system, and are used for obtaining spa-
tial descriptions of objects that have been previously
anchored or even disambiguate between instances of
concepts that fall into the same generalization like in
the example in the Table 3. Notice also in the last query
of the dialogue that the ontology within the KB is ex-
ploited to provide for a more robust dialogue and the
ambiguity is possible to resolve by providing more in-
formation about the spatial relations of the objects.

Table 4

Commonsense Queries

User > What Things are capable of flying?

Self > Bird, Airoplane, (...) are capable

of flying.

User > Is the Flower capable of flying?

Self > I cannot prove that.

User > Do you know that the yellow cup

is located in the kitchen?

Self > Yes.

User > Do you perceive that the yellow

cup is in the kitchen?

Self > No.

User > What is a Flower?

Self > Flower007 is a Flower. Flower is

an Organism Part, a Finite Spatial

Thing, a Biological Living Object,

a Partially Tangible Thing,

a Three Dimensional Thing, (...).

User > Is the Flower in the Kitchen, a Bird?

Self > I cannot prove that.

3.3. Commonsense reasoning

The advantage of using a KB that contains com-
monsense information is that we can exploit this in-
formation to be able to infer things that were not di-
rectly asserted perceptually. This information can be
useful are when queries about functions and properties
of objects are made. Due to the expressiveness of Cyc
we could manage to differentiate perceptual and epis-
temic knowledge, but at the same time keeping both
coherent. In the example in Table 4, we can see that
the system can support both queries of “knowing that
. . . ”, and “perceiving that . . . ”. This virtually creates
the effect of memory, where we know about things we
have seen in the past, but we currently do not perceive
any more. This function is supported by the memory
structures in the Perceptual Anchoring level, where it
is explicitly stated what is perceived or not, at any
given point in time. What is not perceived any more,
the perceptual information is not discarded but trans-
ferred to knowledge repository (e.g. as explained in
Section 2.4.1). In this way, this information to be ac-
cessible in the future. When objects are not perceived,
the assumption is that their properties do not change,
however, new perceptual information can update an
objects properties.
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4. Conclusion & future work

In this work we have investigated the integration of
Cyc with a perceptual system consisting of networked
sensors. The common sense functionality in Cyc was
exploited to reason about objects and their properties.
The use of Cyc offered advantages, as there was less
time spent on ontology concerns as well as entering or
creating new knowledge in the KB. A further advan-
tage is the exploitation of commonsense knowledge
in order to infer things that could not be inferred by
having the symbolic descriptions on their own. Focus
was concentrated on the perceptual anchoring and the
necessary processes to synchronize the symbolic sys-
tem with the perceptual data. The dialogue has been
used to validate the system. To our knowledge this is
the first integration attempt of a substantial determin-
istic logical database with a perceptual system with
real world sensed data. It is the combination of all
three, robust perceptual system, anchoring and a sub-
stantial KB that enables us to ground NL oriented
queries in observations through the procedure that is
explained in this paper, in a dynamically changing en-
vironment.

A number of issues will be considered for future
validation. There are some practical considerations re-
garding the improvement of the current architecture.
We find that the object recognition component can be
greatly improved by a GPU assisted version of the
SIFT algorithm [5] to achieve close to realtime perfor-
mance. We plan to replace the model for computing
the spatial relations with the one found in [25], so as
to approximate the global positions of the recognized
objects and then be able to compute a larger set of spa-
tial relations, including objects not seen, at some point
in time. Most importantly we anticipate an improve-
ment of the natural language understanding mecha-
nism by a more sophisticated method which uses the
full spectrum of Cyc’s natural language knowledge and
capabilities, so as to be more flexible and robust when
translating from natural language to logic formulae.
It would significantly help also in the case where we
need to teach about new concepts in the Knowledge
Base using spoken language. Finally with respect to
the evaluation, we are interested to investigate the be-
havior of the system when scaling some factors, for in-
stance the number of objects, or the grounding plug-
ins.
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