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Abstract. In this work we show how a mobile robot can use spatial
information of objects to improve communication with humans and
other devices located in an intelligent environment. In particular, this
work focuses on using spatial relations to facilitate the creation of a
connection between symbolic and perceptual representation that re-
fer to the same physical object (anchoring). We extend an anchoring
framework to include a set of binary spatial relations which can then
be used to exchange information about objects with a human user. To
illustrate the performance of the framework, a number of scenarios
are presented using a mobile robot. These scenarios are a first step
towards the goal of having mobile robots integrated in an intelligent
environment and communicating with human users.

1 INTRODUCTION
An emerging trend in the field of robotics is the notion of symbi-
otic robotic systems which consists of a robot, human and (smart)
environment cooperating together in performing different tasks [4].
By assisting the robot with information provided by the human or
smart objects, some of the current challenges in robotics can be cir-
cumvented. For instance, localisation of the robot can be done with
a system of surveillance cameras and object recognition tasks can be
assisted by passive technologies like RFID. Human assistance and
cooperation can also be used to provide instructions to the robot and
to assist the robot in case of failure or ambiguous situations when
several choices are possible. The motivation behind the symbiotic
system is the integration of robotics into everyday life. Therefore, it
is essential to allow a range of different users to be able to commu-
nicate to the system, this range should include both expert users and
even bystanders.

A natural form of communication between humans and the robots
is natural language dialogue. In a system where a human provides
assistance to the robot it is most convenient for the human to com-
municate to the robot using dialogue, particularly in the case of a
non-expert interacting with the robot. Among the many challenges
that this task presents, in this paper, we concentrate on the corre-
spondence that must necessarily exist between the linguistic sym-
bols used by a human and the sensor data perceived by the robot.
We call anchoring the process of creating and maintaining over time
the connection between the symbols and the corresponding percep-
tual representation that refer to the same physical objects. Already in
the field of robotics, anchoring has been explored in systems that use
planning and a variety of sensing modalities (e.g. vision and olfac-
tion) [2, 10]. In this paper we examine the possibility to integrate the
anchoring framework in a symbiotic robotic system. In particular, we
focus on the inclusion of spatial relations in the anchoring framework
for the purpose of human-robot communication via language.
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To accomplish this task, we extend our existing framework [3] to
include a set of binary spatial relations; “at”, “near”, “left”, “right”,
“in front”, and “behind” for 2D space. As spatial prepositions are
inherently rather vague, a technique using fuzzy sets is applied to de-
fine graded spatial relations. The proposed method computes a spa-
tial relations-network for anchored symbols and stores that in the
anchors. The relations are then used to assist the robot in resolving
ambiguities, identifying objects and improving general task perfor-
mance of the anchoring framework.

This paper is organised as follows: Section 2 summarises related
work on spatial relations and perceptual anchoring. In Sections 3
and 4 we detail the perceptual anchoring and the designed spatial
relations used in this work. Section 5 describes some initial experi-
mental scenarios and future work. Section 6 gives a conclusion.

2 RELATED WORK

Most of the work on spatial relations is concerned with connecting
the visual domain with the verbal domain of humans. Gapp [6] de-
scribes a computational model to compute and evaluate graded spa-
tial relations in 3D space for a visual scene description generator. Ob-
jects are approximated by their centre of gravity and bounding rect-
angle, since only the object’s location is required for the applicability
of the spatial relation. The semantics of the relations are defined by
evaluation functions depending on the proximal distance and orien-
tation angle between a reference object and the object to be located.
Abella and Kender [1] present a system that qualitatively describes
the spatial layout of objects with binary relations, from a birds eye
view. To account for the vagueness of spatial prepositions, they apply
a fuzzyfication technique and use a threshold to decide if two objects
are no longer describable by a given preposition. Our computational
model for the evaluation of spatial relations is mainly based on the
one presented by Gapp, and we apply a thresholding function to se-
lect relevant relations.

Work that deals with the abstraction of spatial information from
sensory data on robotic platforms is e.g. the one by Skubic et al. [14].
They use a more complex computational model based on the “his-
togram of forces”. Their system generates linguistic expressions that
describe spatial relations between a mobile robot and its environ-
ment, based on range readings from a ring of SONAR sensors.
Luke at al. [11] present a stereo vision system that can generate lin-
guistic spatial relations for 3D scenes, adopting a fuzzy-set approach
and the above mentioned histogram of forces. Hois et al. [9] describe
an object recognition system based on 3D LASER scans. The recog-
nition process is supported by interaction with the user and ontologi-
cal deduction. Unidentified objects can be labelled by the user, using
a speech interface, or are classified through the designed domain on-
tology. In a subsequent phase, the user can query the system for scene
descriptions, involving spatial relations to specify object locations.



We would like to investigate a similar approach, the exploitation of
semantic knowledge, in our future work.

In the above examples the human-robot interaction (HRI) is lim-
ited to a (conventional) “master-slave” mode of communication, but
our interest is to enable the robot to make use of humans in order to
compensate for perceptual or cognitive deficiencies. A good exam-
ple in this line of thought is the “Peer-to-Peer Human-Robot Inter-
action” project [5], that aims to develop a range of HRI techniques
so that robots and humans can work together in teams and engage
in task-oriented dialogue. One of the key components are computa-
tional cognitive models for human space perception and spatial rea-
soning. Of more practical relevance is the work by Moratz and Ten-
brink, e.g. [12], that deals with the use of spatial language in human-
robot communication. They describe a computational model for a
mobile robot platform with a visual object recognition system. The
model is evaluated in a number of experiments with uninformed users
instructing the robot in spatial identification tasks. Their results pro-
vide hints for possible communication scenarios and the employed
communication strategies and spatial reference systems, that we will
consider in our dialogue system.

So far, the use of spatial relations for anchoring has not been stud-
ied in detail. Earlier work [2], investigating the use of planning tech-
niques to recover from perceptual failures and ambiguous cases in
perceptual anchoring, incorporated a simple means to refer to an ob-
ject by specifying its relations to other anchored objects, but only the
relations “at” and “near” where supported, and computed on-the-fly
using a simple and crisp computational model.

3 PERCEPTUAL ANCHORING
As described in the introduction, the task of anchoring is to create and
maintain in time the correspondence between symbols and percepts
that refer to the same physical object. This correspondence is reified
in a data structure α(t), called an anchor. It is indexed by time as
the perceptual system continuously generates new percepts; and the
created links are dynamic, since the same symbol may be connected
to new percepts every time a new observation of the corresponding
object is acquired. So at each time instance t, α(t) contains a symbol
identifying that object, a percept generated by the latest observation
of the object, and a perceptual signature meant to provide the (best)
estimate of the values of the observable properties of the object. See
figure 1 for a graphical illustration. Following [3] the main parts of
anchoring are:

• A symbol system, including a set X = {x1, x2, . . .} of individ-
ual symbols (variables and constants), a set P = {p1, p2, . . .} of
predicate symbols, and an inference mechanism whose details are
not relevant here.

• A perceptual system, including a set Π = {π1, π2, . . .} of pos-
sible percepts, a set Φ = {φ1, φ2, . . .} of attributes, and percep-
tual routines whose details are not relevant here. A percept is a
structured collection of measurements assumed to originate from
the same physical object; an attribute φi is a measurable prop-
erty of percepts with values in the domain D(φi). Let D(Φ) =⋃

φ∈Φ
D(φ).

• A predicate grounding relation, g ⊆ P × Φ × D(Φ), which em-
bodies the correspondence between (unary) predicates and values
of measurable attributes. The relation g maps a certain predicate
to compatible attribute values.

The following definitions allow to characterise objects in terms of
their (symbolic and perceptual) properties:

• A symbolic description σ is a set of unary predicates from P .
• A perceptual signature γ : Φ 7→ D(Φ) is a partial mapping from

attributes to attribute values.
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Figure 1. Graphical illustration of the anchoring framework: the anchoring
module connects the perceptual and the symbolic systems in a physically

embedded intelligent system. Spatial relations between anchored objects are
maintained within the anchoring module.

The extension of the framework [3] presented in [10] allows the
creation of anchors in both a top-down and a bottom-up fashion:
bottom-up acquisition is triggered by recognition events from the
sensory system when percepts can not be associated with existing
anchors; top-down acquisition occurs when a symbol needs to be an-
chored to a perceptual description (such a request may come from a
top-level planner). These functionalities are realised through:

• Acquire: creates a new anchor whenever a percept is received
which currently does not match any existing anchor, and inserts
symbolic information about the object and its properties into the
planner’s world model.

• Find: takes a symbol x and a symbolic description and returns an
anchor α defined at time t (and possibly undefined elsewhere). If
an existing anchor, created by Acquire, satisfies the symbolic de-
scription it selects one; otherwise it searches for matching percepts
and, if one is found, creates an anchor for it. Matching of anchor
or percept can be either partial or complete: it is partial if all the
observed properties in the percept or anchor match the symbolic
description, but there are some properties in the description that
have not been observed.

At each update cycle of the perceptual system, when new percep-
tual information is received, it is important to determine if the new
information should be associated to an existing anchor (data associa-
tion problem). The following functionality addresses the problem of
tracking objects over time:

• Track: takes an anchor α defined at t−k and extends its definition
to t. The track assures that the anchor’s percept is the most recent
and adequate perceptual representation of the object. This facili-
tates the maintenance of a stable representation of the world on a
symbolic level.

By having an anchor structure maintained over time, the chal-
lenge is to determine if the association of new percepts is justified
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or whether certain anchors should be removed. According to [10],
this is a difficult problem, because conceptually it is not clear when
it is appropriate to remove anchors from the system. The current sys-
tem adopts a simple solution in which objects that are not perceived
when expected decrease in a “life” value. When the anchor has no
remaining life, it is removed.

4 SPATIAL RELATIONS
For the computation and evaluation of basic spatial relations’ mean-
ings we follow the approach presented in [6] and apply it to 2D
space. Two classes of binary spatial relations between a reference
object REFO and the object to be located LO (located object) are
considered: the topological relations “at” and “near”, and the projec-
tive relations “front of”, “behind”, “right”, and “left”. To model the
vagueness of spatial prepositions, the evaluation of a spatial relation
results in a degree of applicability in the interval [0..1], representing
the range between “not” and “fully” applicable, respectively.

Egocentric Frame of Reference
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Robot (Origo)

Deictic Orientation
of REFO
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LO

Local Frame of Reference

d local
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Transformation

Figure 2. Frame of reference, and computation of distance and orientation
angle. Objects are represented by their idealised point location.

4.1 Idealised Object Representation and Frame of
Reference

In order to establish spatial relationships between anchored objects
we need a geometrical representation of the objects. For the purpose
of this work, we assume that the perceptual system provides the rel-
ative 2D position of objects with respect to the robot, stored in the
perceptual signature. Objects are represented by an idealised point
location, derived by projecting the object’s centre of gravity (in the
video image) onto the floor-plane. See Figure 2 for illustration.

An important aspect is the selection of an appropriate frame of
reference [8] for the evaluation of spatial relations. No global frame
of reference is used for the robot and therefor also not for the spatial
relations. Instead we choose an egocentric frame of reference, as we
consider this a more intuitive approach, especially with respect to an
intended human-robot interaction (see future work, and [12]).

4.2 Topological Relations
The topological relations “at” and “near” both refer to a region prox-
imal to an object. Following [6] their semantics is defined as: “at”
localises an object in the proximal exterior of a REFO, and contact
is not necessary; for the relation “near” contact between objects is
explicitly prohibited.

A local coordinate system at the REFO, aligned to its deictic ori-
entation, as shown in Figure 2, is defined, and the local coordinates

of the LO w.r.t. the REFO are computed through a transforma-
tion TREFO (rotation and translation). From this the Euclidean dis-
tance dlocal(LO) := ||TREFO(LO)|| is computed. We use simple
trapezoidal membership functions µtopo for the evaluation (others
are possible, e.g. spline functions [6]), mapping object distances to
the degree of applicability atopo:

atopo : (LO, REFO) 7→ µtopo(dlocal(LO))

with topo ∈ {at, near}. Figure 3 (top) shows a possible definition
for membership functions for the relations “at” and “near”.

4.3 Projective Relations

The relations “front of”, “behind”, “right”, and “left” mainly depend
on the orientation of the LO w.r.t. the REFO, and partition the space
in qualitative acceptance areas (as suggested in [8]). But also the dis-
tance has to be taken into account: if the distance from the REFO
to the LO increases, the degree of applicability aproj decreases. The
evaluation function is defined as:

aproj : (LO, REFO) 7→ µdist(dlocal(LO)) · µproj(αlocal(LO))

with proj ∈ {front, behind, left, right}, mapping the orientation
onto the linguistic variables, weighed by the distance. Figure 3 shows
a possible definition of the functions µproj (bottom) and µdist (top).
Although Gapp [7] dropped the distance factor µdist in an empiri-
cally validated revision of the model from [6], we retain it to account
for the uncertainty in the visual object localisation, which in our ap-
proach weighs heavier than the concern for a cognitively valid model.
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Figure 3. Used membership functions for the evaluation of the spatial
relations: µtopo (top), µproj (bottom), and µdist (top).

5 ANCHORING WITH SPATIAL RELATIONS

In order to integrate the spatial relations into the existing anchoring
framework (see Figure 1), we proceed as follows: At every perceptual
update cycle a decision is made for which anchors spatial relations
have to be computed. In the current implementation, this is done for
all anchored objects. For each anchor, as the located object, all de-
fined spatial relations are computed with respect to all other selected
anchors (as reference objects). Only those relations with a degree of

3



applicability greater than a predefined threshold are considered, as
in [1], and the others are discarded.

The computed spatial relations, tuples of the form
〈LO, RO, relation, degree〉, are stored within the anchor of
the located object in an additional slot, as we do not consider this
information to be part of the anchor’s symbolic description. The
find functionality was extended to include this information for the
matching, to allow spatial relations in the symbolic description of a
query.

Figure 4. The experimental test-bed, the PEIS-room: view of the kitchen,
and robot inspecting the fridge with video camera and electronic nose.

5.1 Example Scenarios

The experimental test-bed for our system is a mobile robot platform
that is part of an ambient intelligent environment, called the PEIS
Ecology [13]. The robot “shares” a small furnished apartment (the
PEIS-room, see Figure 4) with humans and other ambient intelligent
devices, and is able to exchange information with these devices.

In the first example the robot surveys a static scene with three
objects (two green garbage cans and a red ball, see Figure 5) and the
anchoring module creates anchors for these objects as soon as they
are recognised by the vision system. Then the computation of the
spatial relations for these anchors is triggered, resulting in a relation-
graph. The list of anchors (in LISP):

(ANCHOR ANCH-1 GAR-4
(SYMBOLIC-DESCRIPTION
((SHAPE = GARBAGE) (COLOR = GREEN)))

(PERCEPTUAL-DESCRIPTION ... )
(SPATIAL-RELATIONS
((GAR-5 ((AT 1.0) (LEFT 0.94)))
(BALL-2 ((AT 1.0) (BEHIND 0.94)

(LEFT 0.62)))))
... )

(ANCHOR ANCH-2 BALL-2
(SYMBOLIC-DESCRIPTION
((SHAPE = BALL) (COLOR = RED)))

(PERCEPTUAL-DESCRIPTION ... )
(SPATIAL-RELATIONS
((GAR-5 ((AT 1.0) (FRONT 0.96)

(LEFT 0.43)))
(GAR-4 ((AT 1.0) (FRONT 0.96)

(RIGHT 0.2)))))
... )

(ANCHOR ANCH-3 GAR-5
(SYMBOLIC-DESCRIPTION
((SHAPE = GARBAGE) (COLOR = GREEN)))

(PERCEPTUAL-DESCRIPTION ... )
(SPATIAL-RELATIONS

Figure 5. Example scenario: scene from the robot’s viewpoint (top) and
snapshot of the robot’s perceptual space with the created anchors (bottom).

((GAR-4 ((AT 1.0) (RIGHT 0.94)))
(BALL-2 ((AT 1.0) (BEHIND 0.96)

(RIGHT 0.85)))))
... )

It is now possible to use spatial relations in the find
functionality (implemented by (FIND-ANCHOR (NAME
SYMBOLIC-DESCRIPTION))) to search for anchors, for ex-
ample:
(FIND-ANCHOR ’MY-GARBAGE
’((SHAPE = GARBAGE) (LEFT-TO = BALL-2)))

returns ((ANCHOR ANCH-1 MY-GARBAGE ... )) as result.
In a second experiment, a human user is asked to resolve an am-

biguity in a find request: in the scene from the previous example, the
query is “Find the green garbage can”. (This experiment is scripted
and uses a simple pre-formulated scheme to guide the interaction
with the user by text prompts.) As the find request returns more than
one anchor (namely ANCH-1 and ANCH-3), the script determines an
anchored object that is spatially related to these anchors as reference
object and presents the user with a choice, enumerating the returned
anchors and their spatial relation(s) to the reference object. Then the
query is reformulated using additionally the selected relation(s). For
example:

? (FIND-ANCHOR ’ANCH
’((SHAPE = GARBAGE) (COLOR = GREEN)))

- FOUND 2 CANDIDATES: PLEASE CHOOSE
- 1. GREEN GARBAGE LEFT BEHIND OF RED BALL
- 2. GREEN GARBAGE RIGHT BEHIND OF RED BALL
? 1
- REFORMULATING:
- (FIND-ANCHOR ’ANCH ’((SHAPE = GARBAGE)

(COLOR = GREEN) (LEFT-OF = BALL-2)
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(BEHIND-OF = BALL-2)))
- FOUND: ((ANCHOR ANCH-1 ANCH ...))

As outlined in the introduction, the robot should also be able to
interact with intelligent devices in the environment, in addition to hu-
mans as illustrated in the previous example. Therefore in a possible
third scenario, the robot could use an external video surveillance
system to find an object of interest. In this case, a stationary video
surveillance system consisting of several cameras, where each sin-
gle camera incorporates a private instance of the anchoring module,
keeps track of objects in the environment. If the robot is not able to
recognise and locate a certain object of interest, but can describe the
object in terms of a symbolic description, a request with this descrip-
tion can be sent to the surveillance system. Provided that one of the
cameras is able to identify the object, the system, knowing the loca-
tion of the robot, can qualitatively describe the object’s location from
the robot’s point of view and send a reply.

5.2 Future Work

The current system still lacks a lot of desired functionality and has
a number of major shortcomings, e.g.: For now we have not consid-
ered ego-motion of the robot; as we use an egocentric frame of ref-
erence, spatial relations have to be continuously updated while the
robot is moving. The difficulty is to decide when to update the rela-
tions (e.g., change of view point), and which anchors are concerned.
This demands a more convenient and detailed storage of the relations
including view points and reference frames. Furthermore some infer-
ence (or reasoning) capability is desirable, to accomplish for example
view point-taking (as outlined in [5]).

The linguistic HRI part is still unimplemented and will be one
of the next steps. To exploit the anchoring framework in human-
robot communication we intend to connect the anchoring module to
a symbolic knowledge representation system and a (simple) speech
dialogue system, as in [9]. Possible scenarios are semi-autonomous
teleoperation of the robot by verbal instructions, like (incremental)
navigation instructions, or object identification or localisation tasks
involving spatial relations, similar to those described in [12].

6 CONCLUSION

In this work we have extended the anchoring framework to include
how objects are spatially related to another in the environment. This
is particularly useful for robotic systems working in real environ-
ments using real sensor information, as cases of ambiguity may
arise where visually identical objects may be present. Furthermore,
spatial-relation information facilitates human-robot communication
where a human user may find it more intuitive to instruct a robot
using spatial communication via language.

The implementation of the anchoring module and the spatial
relations-part is still in an early stage and lacking many desired fea-
tures, so that not all intended scenarios could be tested. This is left
for future work.
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