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Abstract— We propose a new approach to appearance based words, the parameters of a normally distributed probabilit
loop detection from metric 3D maps, exploiting the NDT surfae  density function (PDF) describing the local surface shape.
representation. Locations are described with feature higigrams The covariance matrix can encode either a round. linear

based on surface orientation and smoothness, and loop clasu . . .
can be detected by matching feature histograms. We also (stretched ellipsoid) or planar (squashed ellipsoid) sh&jur

present a quantitative performance evaluation using two ral- appearance descriptor is _Cr_eated from histograms of these
world data sets, showing that the proposed method works well local surface shape descriptions.

in different environments. In order to minimise the issues with spatial discretisation
the cells are overlapping, so that if the side length of each

) ) ) cell is ¢, the distance between each cell's centre poigy/ s
Being able to detect loop closure is essential for au-

tonomous mobile robot navigation, especially with resped: APpearance descriptor

to the problem of simultaneous localisation and mapping We classify the NDT cells based on the shapes of their
(SLAM). There are algorithms that can distribute the acPDFs. For each cell, the eigenvalugs > Xy > A3
cumulated pose error of pairwise registered scans in ordend corresponding eigenvectars és, 3 of the covariance

to render a consistent map once the robot has detectewhirix are computed. There are three main cell classes.
that it has closed a loop. Some examples include the trésstributions are assigned to a class based on the relations
based relaxation methods of Frese et al. [1], [2] and the 3Detween their eigenvalues with respect to a threshold
relaxation method of Grisetti et al. [3]. However, detegtin (0,1) that quantises a “much smaller” relation.

loop closure when faced with large pose errors remains ane Distributions are linear if\s/\; < t..

open problem. We propose a loop detection approach usinge Distributions are planar if they are non-linear and
only on 3D point cloud data, based on surface shape and ori- \3/\; < t..

entation histograms. The histograms can be compared using Distributions are spherical if they are non-linear and
a difference metric, and 3D scans with similar histograms non-planar (in other words, if no eigenvalue ligt,

are assumed to be from nearby locations. times larger than any other one).

It would be straightforward to use more classes such as

T ~ different levels of “almost planar” distributions by using
Our method is inspired by NDT: the normal distributionsmore ejgenvalue ratio thresholds, but for the data predente

transform. NDT is a method for representing a scan surfagge using more than orte did not improve the result.

as a piecewise continuous function. It has previously beengach of the main classes can be divided into sub-classes,
used for efficient pairwise 2D and 3D scan registration [4Jpased on orientation for the planar and linear classes, and
[5]. However, the NDT surface representation can also bgrface roughness for the spherical class. Usirspherical
used as a compact description of the appearance of a 3Qp-classeg planar sub-classes, ahtinear sub-classes, the
scan, as will be explained in this section. basic element of the proposed appearance descriptor is the

A. The normal distributions transform feature vector

The input to NDT is a 3D point cloud. The points are f = ( Froeooifa s fottveeos fotpy forpttseos forpr ), (1)
represented by the 3D coordinates of their position in space —
(and we use the location of the laser scanner as the origin

of each scan’s local coordinate system). The point cIouYYhFerefiI IS th((aj_nu_rgb(_ar of Cﬁ”S t_hat belong tohg:lﬁss
is transformed into a collection of smooth functions in O Planar distributions, the eigenvecty (which corre-

the following fashion. The space occupied by the scan E)oonds to the smallest eigenvalue) coincides with the nlorma
subdivided into a regular grid of cells (squares in the ZED;:as\/eCtOr of the plane that is approximated by the PDF. Assume

cubes in the 3D case). Each cell stores the mean vector a]t[t;&t there is a set op approximately ev enly distributed
inesP = {P,,...,P,}. For example, using an equal area

covariance matrix of the scan points within the cell; in othe™ =7 " ~ . PJ . .
partitioning [6] to distributep points on a half-spheré&? is
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I. INTRODUCTION

Il. TECHNICAL APPROACH
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whered (e, P) is the distance between a poifitand a line with ambiguous orientations, as opposed to rays, it does not
P. In other words, we choose the index of the liRgthat matter which of the two rotations is used.
is closest toes. In the case of ambiguous peaks (that is, wiEpr ) has
The same method can be used for linear distributions, boiore than one member), we generate multiple histograms.
usingeé; (which corresponds to the linear axis) insteadf For each combinatiodi,jli € Z,j € ZU Y,i # j} we
Spherical sub-classes can be defined by the ratjo\;, apply the rotationR,R to the original scan and generate
although for the data used here, one spherical class sufficed histogram. The outcome is a set of histograffis=

The distance from the scanner location to a particulgfFy, ..., F |z zuy -z} For highly symmetrical scans, this
surface is also important information. For this reasonheacould lead to a large number of histograms. For a scan
location is described by a matrix generated at the centre of a sphere, where the histogram

- o\ T bins for all directions have the same valpé- p histograms
F= (fl o fr ) () would be created. In practice, this has not been a problem.
and a corresponding set of range inter&ls= {r1,...,7-}, D Difference metric

where eachf; is the histogram of all NDT cells within the

range defined by interval;, measured from the origin. To quantify the difference between two appearance de-

scriptors F and G we normaliseF and G with their
C. Rotation invariance entrywise 1-norms, compute the sum of Euclidean distances

Because the appearance descriptor (3) explicitly uses tRgtween each of their rows (that is, each range intervad), an
orientation of surfaces, it is not rotation invariant. Irder ~Weight the sum by the ratio of the number of occupied NDT

for the appearance descriptor to be invariant to rotatioa, t Cells in the scans:

orientation of the scan must first be normalised. r 7 -
- i i max(||F y G
Starting from an initial histogranf’ with R = {[0,)}, o(F,G) = E < ||Ff|| - ||Cg;|| ) min((||||F||||l ||||G||||l))'
we want to find two peaks in plane orientations and orient i=1 1 Lo L !

the scan so that the most common plane normal is align
along thez axis, and the second most common plane norm
is aligned in theyz plane. The reason for orientations of
planes instead of lines is that planar cells are much mo
common than linear ones. For environments with mostl
linear structures, line orientations could be used instead
There is not always an unambigous maximum, soO w
generate twasets of directions:Z and Y. Given the planar o'(F,G) = mino(F;, G;) F,cF,GjeG (9
partp = (p1,...,pp) Of f/ and an ambiguity ratio treshold ]
te € [0,1] that determines which histogram peaks ar@. Parameters
“similar enough”,Z and) are generated as follows:

he factormax(||F|, , ||G||,)/ min(|[F|l, ,||G]|,) is used
to differentiate between large scans (with many NDT cells)
Pepd scans of more confined spaces (with few cells).

Given a scan paifS;, S») with appearance descriptor sets
F,G), all members are compared to each other using (8),
gnd the minimunv is used as the difference measure.

The parameters of the proposed appearance descriptor are

i’ = argmaxp;, 4) « class countss, p, andl,

o « eigenvalue ratio threshold,
Z={ie{l,...,p}pi > tapir}, (5) « range limitsR,
i = argmaxp;li ¢ Z, (6) « ambiguity ratio threshold,,

o NDT cell sizeq.

Y={ietl...pHi € Z,pi = tapir} () We have chosen the values of these parameters empirically.

For eachi € Z, we create a rotatiol. that encodes a Some parameters depend on the scale of the environment, but
rotation of — arccos(P; - (0,0, 1)) radians around the axis we found that a single parameter set worked well for all our
P, x (0,0,1), where P, is a unit vector along the line data. If using a scanner with different resolution or difer
P;. For eachi € ), the corresponding rotatiolR, is max range;R andgq should probably be adjusted.
— arccos((R..P;)-(0,1,0)) radians around the ax(®, 0, 1). We found that using one spherical class, nine planar
The descriptoiF® is created for the rotated sca,R.S. classes, and one linear class worked well for our different

This aligment is always possible to do, unless all planedata sets. The reason for using only one spherical and linear
have the same orientation. If it is not possible to find twalass is that these classes tend to be less stable than planar
main directions it is sufficient to use onB.,, because in this ones. Linear distributions with unpredictable directioesd
case no subsequent rotation around thexis change which to occur at the far ends of a scan, where the point density
histogram bins are updated for any planar PDF. If lineas too small. Spherical distributions often occur at cosner
sub-classes are used, it is possible to deRyefrom linear and edges, depending on where the boundaries of the NDT
directions if not enough planar directions can be found. cells end up, and may shift from scan to scan. However,

It is possible to choose one of two rotations (in oppousing only the planar features & | = 0) decreased the
site directions) when aligning the scan. However, since thabtainable recall rate without false positives or mismeasch
appearance histograms are based on sets of fhesd £  with around one third for our data.



The eigenvalue ratio threshold. and ambiguity ratio 100 True positives o

threshold¢, were also chosen empirically. In our experi- 0 e o -
ments, using. = 0.10 and¢, = 0.60 produced good results. 80 - :
The best cell sizeq depends mostly on the scanner 70 - |

configuration. If the cell size is too small, planes at the
further parts of scans (where the scan points are sparse)
may show up in the histogram as lines with unpredictable
orientation. Previous work [5] has shown that cell sizes
between 0.5 m and 2 m work well for registering scans of the

60 | =) L

50 r

% of scans

30 A -

scale encountered by mobile robots. We have ysed).5 m 201 i
andR = {[0,3),[3,6),[6,9),[9,15), [15,00)}. 1 I
Two more parameters determine the outcome when exam- 0 ; ; : :
ini H H 5 H 5 . 0 0.0737 0.1 0.2
ining thg similarity m_atrlx for detection of loop closure: Diference threshold 4
o mMinimum loop sizes,
» difference threshold,. Fig. 1. Relationship between difference threshold andesscate for the

If S is too small, a number of correct but uninteresting-lannoverz data set. The threshold giving the maximum number of true
“loops”, consisting only of consective scans, may be de0sitives with no errors is marked with a bar.
tected. We are only interested in detecting proper loops tha
contain more than some minimum number of scans. The
minimum loop sizeS should therefore be set to the minimum
number of scans that can be expected to be recorded between % 7 i
two visits to any location. Each sca$) is compared to all
other scans, except for the closest oR€s_g, ..., S;1s}.

We setS to 30 when testing the algorithm.

It is important to find a good value for the difference
thresholdt,, which determines which pairs are considered
overlapping (positives). An “overlapping scan” in this eon
text is a scan that is taken in a region that overlaps with
another visited region. Setting; too small decreases the
number of true positives. Setting it too large increases the ot R 5 .
number of false positives. Fig. 1 shows how the numbers of Closest difference value o
true positives, false positives, and mismatches chandge wit
various difference thresholds. Mismatches are overlappirkig. 2. Determiningt, for the Hannover2 data set using EM with three
scans that are matched to the wrong scan. Gaussian kernels. A histogram showing the difference gabfeall scans’

A method for determining, that has been useful for our POSSITr neghbour s bl e background, Thiemi fed o
experiments is to perform expectation maximisation (EM)
to fit a mixture of three Gaussian curves to the smallest
difference values of all scans of a data set and choosing tbg@mpus area, and one from an underground mine.
point where the first and second curves intersect (see Fig. 2) To quantify the performance of the loop detection algo-
The reasoning for using three kernels is that we assume thithm, we counted the number of correctly detected over-
difference value comes from one of three distributions: ONkpping scans (true positives), scans incorrectly reghede
with overlapping scans, one with non-overlapping ones, anslerlapping (false positives) and mismatched scans (those
one with random values where the proposed method fails that were correctly regarded as overlapping, but whose
give a meaningful difference measure. corresponding most similar scan was incorrect). Please ref

Finally, one more parameter was used when evaluating tlg Table | to see how scans were labelled.
classification result with respect to the ground truth data:

« distance threshold.. A. Data sets
This parameter is only added for convenience in order to 'N€Hannover2 (Fig. 3(a)) data set was recorded at the uni-
save the labour of manually judging which scans are froff€rsity campus of Leibniz Universitat Hannover, Germany.
overlapping regions. Instead, all scans that have at lemst dt contains 922 3D omni-scans (with 36@ield of view),
other scan outside the minimum loop siesuch that the COVering a trajectory of about 1.24 km. Each scan contains

ground truth distance between the two scans is less than fHRProximately 15000 points.

15 r

10 1 r

Number of scans

distance threshold, are considered overlapping. TheKvarntorp d_ata set (_sh_own in Fig. 4(a)) was recorded _in
the Kvarntorp mine outsid®rebro, Sweden. The data set is
Ill. EXPERIMENTS divided into four “missions”. For the experiments presente

In order to evaluate the performance of the proposed this paper, we used “mission 4” followed by “mission 1”.
algorithm, we used two data sets: one outdoor set from Ehis combined mission sequence has 131 3D scans, each



TABLE |
TAXONOMY FOR EVALUATING RESULTS. GIVEN A SCAN S, S IS THE
SCAN NEAREST TOS (EXCEPT THOSE WITHIN THE MINIMUM LOOP SIZE

TABLE Il
SUMMARY OF CLASSIFICATION RESULTS FOR MANUALLY SELECTEDE .
IN ALL CASES, THERE WERE NO MISMATCHES

S), AND S IS THE MOST SIMILAR SCAN TOS.

Sis if /(S,S) and distance t& and distance t& Data set pos. neg. ta true pos. false pos.
0, 0,
true positive < £ 1, <t Hannover2 575 347 0.0737 35.30A> Of)
mismatch <ty <t >t Kvarntorp 35 95 0.0894 31.4% 1.1%
false positive < tg4 >ty any
true negative >ty >ty any
false negative > ¢4 <tr any some distance between the first and second run through that

area (as may be seen from the lighter shade in the circled
area of Fig. 3(b)), so those scans only barely overlap.

covering a 180 field of view and containing around 70000 The stretch E-F (scans 251-350) is revisited while travel-
data points. The total trajectory is about 370 m. ling in the opposite direction (scans 612—-715). These ae th

The Kvarntorp data set is rather challenging for a numbetongest sequences of scans that are taken in different-direc
of reasons. Firstly, the mine environment is highly selftions, and should give a good indication of the algorithm’s
similar. Without knowledge of the robot’s trajectory, it isrobustness under viewpoint changes. The recall rate when
very difficult to tell different tunnels apart. The fact thatexamining only E-F and F-E is 45.1% using= 0.0737,
the scans of this data set are not omnidirectional alsand the maximum recall rate with no errors is attained using
makes it more difficult, because the same location looks, = 0.0821 which gives a recall rate of 53.4%.
quite different depending on which direction the scanner 2) Underground mine data: Ground truth poses for the
is pointing towards. The median distance travelled betweavarntorp data set were provided using the algorithm pre-
consecutive scans was also longer for this data set: arousehted in [9]. It is a network based global relaxation method
2.5 m, compared to 1.5 m fotannover2. for 3D laser scans. To generate a genuine truth, the network

All of the scan data are available for download [7]. Thevas manually given to the algorithm and the result was
ground truth poses are available from the authors on requegisually inspected for correctness.
B. Resllts The loop deFecti_on e_tlgorithm o_lescribed in this paper

' cannot be rotation invariant if the input scans are not om-

The results are summarised in Table II. nidirectional. When looking in opposite directions froneth

1) Outdoor data: For theHannover2 data set, ground truth same place, the view is generally very different. Because an
pose measurements were acquired by registering every hnidirectional scanner was not used to recgwdrntorp,
scan against a point cloud made from a given 2D map anghly scans taken in similar directions were counted as
an aerial lidar scan made while flying over the campus aregverlapping when evaluating the algorithm for this data set
Fig. 3(c) shows the similarity matrix for our algorithm andThe distance matrix shown in Fig. 4(b) only shows scan pairs
Fig. 3(b) shows the ground truth distance matrix. For thighat were taken with a maxiumum orientation difference of
data set, we uset) = 10 m. 20°. We also choseé, = 5 m instead of 10 m. The reason

For the parameter values stated in Section II-E, the difor selecting a smaller distance threshold is firstly beeanfs
ference threshold, = 0.0737 gives the maximum number the scanner’s limited field of view and secondly because of
of true positives without any false positives: a recall rate the more confined spaces of the mine environment. These
35.3%. These results are comparable to visual place recqgm factors make the appearance of scenes change more
nition methods using SIFT features from camera images [&rastically than in the open-air scansHfnnover2.
At this point it should be noted that a recall rate of 30% is we used the same parameters for this data set as for
often sufficient to close all loops as long as the number Qfannover2, except fort, = 0.0894. The recall rate with this
false positives and mismatches is low, because severa$ scan was 31.4% and there was one false positive. The ground
are usually taken from each location. truth distance matrix is shown in Fig. 4(b), and the similari

Using ¢4 = 0.0657 instead, as determined by expectationmatrix of our algorithm is shown in Fig. 4(c).
maximisation (Fig. 2), the result is 29.2% true positivasda

no errors). The parameters of the Gaussian mixture modei Execution time

were initalized by running a maximum of 50 EM iterations The experiments were run using a C++ implementation on

from randomly initialized start parameters and selectimg t a laptop computer with a 1600 MHz Intel Celeron CPU and

parameters providing the best likelihood among thosestrial2 GiB of RAM. For theHannover2 data set, average times for
Using minimum loop siz&s' = 0 (which entails that 100% computing the surface shape histograms were 0.18 s per call

of the scans are overlapping) ang= 0.0737, the result is to the histogram computation function, and in total 0.94 s

45.9% true positives and 0.5% mismatches. per scan to generate histograms (this includes transfgrmin
The most difficult part of thedannover2 data set is when the scan, generatinﬁ and the histograms that make &).

the stretch H-I is revisited (scans 480-513 and 815-847)he average size of is 3.2 histograms. In total, 61.2 s were

Only a few of those scans were detected. However, therespent to compute similarity measures for scan pairs. There
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(a) Overview of theHannover2 data set, seen(b) Ground truth distance matrix, showing all scaft) Similarity matrix, showing all scan pairs whose
from above with parallel projection. The robopairs taken less than 10 m apart. The circled arddference valuer’ < 0.0737. Because of the large
traveled along the sequence A-B—C-D-A-B—-HEwnarks where H-I is revisited. matrix and the small print size, this image has been
F-A-D-G—-H-I-J-H-K—F-E-L—I-K-A. morphologically dilated by 8 x 3 element in order

to better show the values.

Fig. 3. TheHannover2 data set.
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(a) Overview of theKvarntorp data set. The (b) Ground truth distance matrix, showing all scaft) Similarity matrix, showing all scan pairs with
robot travelled along the sequence A—-B—C—-D—fpairs taken less than 5 m apart and with an oriea-difference valuer’ < 0.0894.
A-F-G-A-B-C—H-F-H. tation difference of less than 20

Fig. 4. TheKvarntorp data set.

TABLE Il

are 922 scans in the data set, 2947 histograms were created,
SUMMARY OF RESOURCE REQUIREMENTS

29472 similarity measures were computed, so the average
time per similarity comparison was around.$. So if each

. . . Data set Scans AvdS| Avg. creation time  Avg/|F|
scan requires the generation of 3.2 histograms on average,
a new scan can be compared to roughly 13800 other scanglannover2 922 15k 0.18 s 3.2
130 70k 0.27' s 2.8

in one second to test for loop closure, disregarding the time Kvarntorp
needed to compute the histograms.

The requirements for both data sets are summarised in
Table IIl, showing the number of scans in each data set and
the average point count per scan, as well as the averagePrevious work on loop detection has focused mostly on
time to create a single histogram and the average numhgata from camera images and 2D range data.
of histograms generated per scan. The time for creating Cummins and Newman [10] have presented a bag-of-
the histograms and the number of histograms required ferords based method using “visual words” from camera
rotation invariance depend on the sizes of the point cloudsnages. Scenes are represented as a collection of such
but the time required for similarity comparisons depend/onlwords (local visual features) drawn from a “dictionary” of
on the number of histogram bins. available features. The appearance descriptor is a binary

IV. RELATED WORK



vector indicating the presence or absence of all words iestimated tol.5 - 322 = 1536 s (the complete time is not
the dictionary. The appearance descriptor is used within explicitly stated in [14], but pairwise spin-image mataiis
probabilistic framework together with a generative modeleported to require 1.5 s on average). With a data set of that
that describes how informative each visual word is andize, a rough estimate of the execution time of the algorithm
common co-occurrences of words. Cummins and Newmaroposed in this paper 82-0.8+(32-3)2-7-107¢ = 26 s on
have reported recall rates of 35% to 46% on urban outdosimilar hardware, based on the execution times in Table IlI.
data sets. However, it shom_JId be noted that it_is difficult to V. CONCLUSIONS AND FUTURE WORK
compare recall rates from different data sets. It is notiptess )
to say how their method would perform in the environments W& have described a novel approach to appearance-based
used in our experiments, and vice versa. place re_zcognltlon using 3D range data. We have demon-
A method that is more similar to the approach presente’ﬂrated its performance on two real-work_j data sets. We can
here is the 2D histogram matching of Bosse et al. [1lfonclu<j_e that the results are encouraging, and the penfor-
[12]. While our method may also be referred to as histograffance is comparable to that of loop detection methods using
matching, there are several differences. For example,eBosésual data, with a recall rate of over 30% even for quite

et al. create 2D histograms with one dimension for the spatigh@/lénging underground mine data.

distance to the scan points and one for scan orientations,1 "€ purpose of this paper is to demonstr_ate the perfor-
The angular histogram bins cover all possible rotations df'anc€ of the NDT-based appearance de.scrlptor. To f_urther
a scan in order to achieve rotation invariance. With thdnProve performance, future work should include learning a
parameters used in their papers, 240000 histogram bins &gherative modelin order to learn how to disregard common,
required for the 2D case. For unconstrained 3D motion witROndiscriminative, features, based on the general appeara
angular bins for the;, y, andz axes, a similar discretisation of the current 3“”9““0“”9_5 (see [10]). .
would lead to many millions of bins. In contrast, the 3D It would also be interesting to do a more elaborate analysis

histograms presented here require only a few dozens of bifd, the similarity matrix than simple thresholding in order t
The histogram matching of Bosse et al. is reported to worREter discriminate between overlapping and non-ovenfepp
well for the kidnapped robot problem, but they have noscans. A more detailed study of useful models for finding the

provided a quantitative performance evaluation yet. d|ﬁereﬂce ftresholdd zvoEld %ls.o lied|n'§erestlng. ina h hi
Daniel Huber has described a method based on spin-Furt er future work should include Investigating how this

images [13] for matching multiple 3D scans without initial"jlpproach performs when faced with dynamic changes, such

pose estimates [14]. Such global registration is closéfted S moving furniture or people.
to the loop detection problem. An important difference REFERENCES
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