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Abstract— We propose a new approach to appearance based
loop detection from metric 3D maps, exploiting the NDT surface
representation. Locations are described with feature histograms
based on surface orientation and smoothness, and loop closure
can be detected by matching feature histograms. We also
present a quantitative performance evaluation using two real-
world data sets, showing that the proposed method works well
in different environments.

I. I NTRODUCTION

Being able to detect loop closure is essential for au-
tonomous mobile robot navigation, especially with respect
to the problem of simultaneous localisation and mapping
(SLAM). There are algorithms that can distribute the ac-
cumulated pose error of pairwise registered scans in order
to render a consistent map once the robot has detected
that it has closed a loop. Some examples include the tree
based relaxation methods of Frese et al. [1], [2] and the 3D
relaxation method of Grisetti et al. [3]. However, detecting
loop closure when faced with large pose errors remains an
open problem. We propose a loop detection approach using
only on 3D point cloud data, based on surface shape and ori-
entation histograms. The histograms can be compared using
a difference metric, and 3D scans with similar histograms
are assumed to be from nearby locations.

II. T ECHNICAL APPROACH

Our method is inspired by NDT: the normal distributions
transform. NDT is a method for representing a scan surface
as a piecewise continuous function. It has previously been
used for efficient pairwise 2D and 3D scan registration [4],
[5]. However, the NDT surface representation can also be
used as a compact description of the appearance of a 3D
scan, as will be explained in this section.

A. The normal distributions transform

The input to NDT is a 3D point cloud. The points are
represented by the 3D coordinates of their position in space
(and we use the location of the laser scanner as the origin
of each scan’s local coordinate system). The point cloud
is transformed into a collection of smooth functions in
the following fashion. The space occupied by the scan is
subdivided into a regular grid of cells (squares in the 2D case,
cubes in the 3D case). Each cell stores the mean vector and
covariance matrix of the scan points within the cell; in other
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words, the parameters of a normally distributed probability
density function (PDF) describing the local surface shape.
The covariance matrix can encode either a round, linear
(stretched ellipsoid) or planar (squashed ellipsoid) shape. Our
appearance descriptor is created from histograms of these
local surface shape descriptions.

In order to minimise the issues with spatial discretisation,
the cells are overlapping, so that if the side length of each
cell is q, the distance between each cell’s centre point isq/2.

B. Appearance descriptor

We classify the NDT cells based on the shapes of their
PDFs. For each cell, the eigenvaluesλ1 > λ2 > λ3

and corresponding eigenvectors~e1, ~e2, ~e3 of the covariance
matrix are computed. There are three main cell classes.
Distributions are assigned to a class based on the relations
between their eigenvalues with respect to a thresholdte ∈
(0, 1) that quantises a “much smaller” relation.

• Distributions are linear ifλ2/λ1 < te.
• Distributions are planar if they are non-linear and

λ3/λ2 < te.
• Distributions are spherical if they are non-linear and

non-planar (in other words, if no eigenvalue is1/te
times larger than any other one).

It would be straightforward to use more classes such as
different levels of “almost planar” distributions by using
more eigenvalue ratio thresholds, but for the data presented
here using more than onete did not improve the result.

Each of the main classes can be divided into sub-classes,
based on orientation for the planar and linear classes, and
surface roughness for the spherical class. Usings spherical
sub-classes,p planar sub-classes, andl linear sub-classes, the
basic element of the proposed appearance descriptor is the
feature vector

~f =
(

f1, . . . , fs
| {z }

spherical classes

, fs+1, . . . , fs+p
| {z }

planar classes

, fs+p+1, . . . , fs+p+l
| {z }

linear classes

)

, (1)

wherefi is the number of cells that belong to classi.
For planar distributions, the eigenvector~e3 (which corre-

sponds to the smallest eigenvalue) coincides with the normal
vector of the plane that is approximated by the PDF. Assume
that there is a set ofp approximately evenly distributed
lines P = {P1, . . . , Pp}. For example, using an equal area
partitioning [6] to distributep points on a half-sphere,P is
the set of lines intersecting the origin and one of the points.
The index for planar sub-classes is

i = s + arg min
j

δ(~e3, Pj), (2)



whereδ(~e, P ) is the distance between a point~e and a line
P . In other words, we choose the index of the linePj that
is closest to~e3.

The same method can be used for linear distributions, but
using~e1 (which corresponds to the linear axis) instead of~e3.

Spherical sub-classes can be defined by the ratioλ2/λ1,
although for the data used here, one spherical class sufficed.

The distance from the scanner location to a particular
surface is also important information. For this reason, each
location is described by a matrix

F =
(

~f1
T · · · ~fr

T

)

T (3)

and a corresponding set of range intervalsR = {r1, . . . , rr},
where each~fi is the histogram of all NDT cells within the
range defined by intervalri, measured from the origin.

C. Rotation invariance

Because the appearance descriptor (3) explicitly uses the
orientation of surfaces, it is not rotation invariant. In order
for the appearance descriptor to be invariant to rotation, the
orientation of the scan must first be normalised.

Starting from an initial histogram~f ′ with R = {[0,∞)},
we want to find two peaks in plane orientations and orient
the scan so that the most common plane normal is aligned
along thez axis, and the second most common plane normal
is aligned in theyz plane. The reason for orientations of
planes instead of lines is that planar cells are much more
common than linear ones. For environments with mostly
linear structures, line orientations could be used instead.

There is not always an unambigous maximum, so we
generate twosets of directions:Z andY. Given the planar
part ~p = (p1, . . . , pp) of ~f ′ and an ambiguity ratio treshold
ta ∈ [0, 1] that determines which histogram peaks are
“similar enough”,Z andY are generated as follows:

i′ = argmax
i

pi, (4)

Z = {i ∈ {1, . . . , p}|pi ≥ tapi′}, (5)

i′′ = argmax
i

pi|i /∈ Z, (6)

Y = {i ∈ {1, . . . , p}|i /∈ Z, pi ≥ tapi′′}. (7)

For eachi ∈ Z, we create a rotationRz that encodes a
rotation of − arccos(~Pi · (0, 0, 1)) radians around the axis
~Pi × (0, 0, 1), where ~Pi is a unit vector along the line
Pi. For each i ∈ Y, the corresponding rotationRy is
− arccos((Rz

~Pi) · (0, 1, 0)) radians around the axis(0, 0, 1).
The descriptorF is created for the rotated scanRyRzS.

This aligment is always possible to do, unless all planes
have the same orientation. If it is not possible to find two
main directions it is sufficient to use onlyRz, because in this
case no subsequent rotation around thez axis change which
histogram bins are updated for any planar PDF. If linear
sub-classes are used, it is possible to deriveRy from linear
directions if not enough planar directions can be found.

It is possible to choose one of two rotations (in oppo-
site directions) when aligning the scan. However, since the
appearance histograms are based on sets of linesP andL

with ambiguous orientations, as opposed to rays, it does not
matter which of the two rotations is used.

In the case of ambiguous peaks (that is, whenZ or Y has
more than one member), we generate multiple histograms.
For each combination{i, j|i ∈ Z, j ∈ Z ∪ Y, i 6= j} we
apply the rotationRyRz to the original scan and generate
a histogram. The outcome is a set of histogramsF =
{F1, . . . ,F|Z||Z∪Y|−|Z|}. For highly symmetrical scans, this
could lead to a large number of histograms. For a scan
generated at the centre of a sphere, where the histogram
bins for all directions have the same value,p2−p histograms
would be created. In practice, this has not been a problem.

D. Difference metric

To quantify the difference between two appearance de-
scriptors F and G we normaliseF and G with their
entrywise 1-norms, compute the sum of Euclidean distances
between each of their rows (that is, each range interval), and
weight the sum by the ratio of the number of occupied NDT
cells in the scans:

σ(F,G) =
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to differentiate between large scans (with many NDT cells)
and scans of more confined spaces (with few cells).

Given a scan pair(S1,S2) with appearance descriptor sets
(F ,G), all members are compared to each other using (8),
and the minimumσ is used as the difference measure.

σ′(F ,G) = min
i,j

σ(Fi,Gj) Fi ∈ F ,Gj ∈ G (9)

E. Parameters

The parameters of the proposed appearance descriptor are

• class counts:s, p, andl,
• eigenvalue ratio thresholdte,
• range limitsR,
• ambiguity ratio thresholdta,
• NDT cell sizeq.

We have chosen the values of these parameters empirically.
Some parameters depend on the scale of the environment, but
we found that a single parameter set worked well for all our
data. If using a scanner with different resolution or different
max range,R andq should probably be adjusted.

We found that using one spherical class, nine planar
classes, and one linear class worked well for our different
data sets. The reason for using only one spherical and linear
class is that these classes tend to be less stable than planar
ones. Linear distributions with unpredictable directionstend
to occur at the far ends of a scan, where the point density
is too small. Spherical distributions often occur at corners
and edges, depending on where the boundaries of the NDT
cells end up, and may shift from scan to scan. However,
using only the planar features (s = l = 0) decreased the
obtainable recall rate without false positives or mismatches
with around one third for our data.



The eigenvalue ratio thresholdte and ambiguity ratio
thresholdta were also chosen empirically. In our experi-
ments, usingte = 0.10 andta = 0.60 produced good results.

The best cell sizeq depends mostly on the scanner
configuration. If the cell size is too small, planes at the
further parts of scans (where the scan points are sparse)
may show up in the histogram as lines with unpredictable
orientation. Previous work [5] has shown that cell sizes
between 0.5 m and 2 m work well for registering scans of the
scale encountered by mobile robots. We have usedq = 0.5 m
andR = {[0, 3), [3, 6), [6, 9), [9, 15), [15,∞)}.

Two more parameters determine the outcome when exam-
ining the similarity matrix for detection of loop closure:

• minimum loop sizeS,
• difference thresholdtd.
If S is too small, a number of correct but uninteresting

“loops”, consisting only of consective scans, may be de-
tected. We are only interested in detecting proper loops that
contain more than some minimum number of scans. The
minimum loop sizeS should therefore be set to the minimum
number of scans that can be expected to be recorded between
two visits to any location. Each scanSi is compared to all
other scans, except for the closest ones{Si−S , . . . ,Si+S}.
We setS to 30 when testing the algorithm.

It is important to find a good value for the difference
thresholdtd, which determines which pairs are considered
overlapping (positives). An “overlapping scan” in this con-
text is a scan that is taken in a region that overlaps with
another visited region. Settingtd too small decreases the
number of true positives. Setting it too large increases the
number of false positives. Fig. 1 shows how the numbers of
true positives, false positives, and mismatches change with
various difference thresholds. Mismatches are overlapping
scans that are matched to the wrong scan.

A method for determiningtd that has been useful for our
experiments is to perform expectation maximisation (EM)
to fit a mixture of three Gaussian curves to the smallest
difference values of all scans of a data set and choosing the
point where the first and second curves intersect (see Fig. 2).
The reasoning for using three kernels is that we assume that
difference value comes from one of three distributions: one
with overlapping scans, one with non-overlapping ones, and
one with random values where the proposed method fails to
give a meaningful difference measure.

Finally, one more parameter was used when evaluating the
classification result with respect to the ground truth data:

• distance thresholdtr.
This parameter is only added for convenience in order to
save the labour of manually judging which scans are from
overlapping regions. Instead, all scans that have at least one
other scan outside the minimum loop sizeS such that the
ground truth distance between the two scans is less than the
distance thresholdtr are considered overlapping.

III. E XPERIMENTS

In order to evaluate the performance of the proposed
algorithm, we used two data sets: one outdoor set from a
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 0

 5

 10

 15

 20

 25

 0.0657 0  0.1  0.2  0.3

N
um

be
r 

of
 s

ca
ns

Closest difference value σ’

Fig. 2. Determiningtd for the Hannover2 data set using EM with three
Gaussian kernels. A histogram showing the difference values of all scans’
most similar neighbour is printed in the background. Three kernels fitted to
the histogram are overlayed. In this case,td = 0.0657 would be used.

campus area, and one from an underground mine.
To quantify the performance of the loop detection algo-

rithm, we counted the number of correctly detected over-
lapping scans (true positives), scans incorrectly regarded as
overlapping (false positives) and mismatched scans (those
that were correctly regarded as overlapping, but whose
corresponding most similar scan was incorrect). Please refer
to Table I to see how scans were labelled.

A. Data sets

TheHannover2 (Fig. 3(a)) data set was recorded at the uni-
versity campus of Leibniz Universität Hannover, Germany.
It contains 922 3D omni-scans (with 360◦ field of view),
covering a trajectory of about 1.24 km. Each scan contains
approximately 15 000 points.

TheKvarntorp data set (shown in Fig. 4(a)) was recorded in
the Kvarntorp mine outsidëOrebro, Sweden. The data set is
divided into four “missions”. For the experiments presented
in this paper, we used “mission 4” followed by “mission 1”.
This combined mission sequence has 131 3D scans, each



TABLE I

TAXONOMY FOR EVALUATING RESULTS. GIVEN A SCAN S , Ŝ IS THE

SCAN NEAREST TOS (EXCEPT THOSE WITHIN THE MINIMUM LOOP SIZE

S), AND S̄ IS THE MOST SIMILAR SCAN TOS .

S is if σ′(S, S̄) and distance tôS and distance tōS

true positive < td < tr < tr

mismatch < td < tr ≥ tr

false positive < td ≥ tr any
true negative ≥ td ≥ tr any
false negative ≥ td < tr any

covering a 180◦ field of view and containing around 70 000
data points. The total trajectory is about 370 m.

The Kvarntorp data set is rather challenging for a number
of reasons. Firstly, the mine environment is highly self-
similar. Without knowledge of the robot’s trajectory, it is
very difficult to tell different tunnels apart. The fact that
the scans of this data set are not omnidirectional also
makes it more difficult, because the same location looks
quite different depending on which direction the scanner
is pointing towards. The median distance travelled between
consecutive scans was also longer for this data set: around
2.5 m, compared to 1.5 m forHannover2.

All of the scan data are available for download [7]. The
ground truth poses are available from the authors on request.

B. Results

The results are summarised in Table II.
1) Outdoor data: For theHannover2 data set, ground truth

pose measurements were acquired by registering every 3D
scan against a point cloud made from a given 2D map and
an aerial lidar scan made while flying over the campus area.
Fig. 3(c) shows the similarity matrix for our algorithm and
Fig. 3(b) shows the ground truth distance matrix. For this
data set, we usedtr = 10 m.

For the parameter values stated in Section II-E, the dif-
ference thresholdtd = 0.0737 gives the maximum number
of true positives without any false positives: a recall rateof
35.3%. These results are comparable to visual place recog-
nition methods using SIFT features from camera images [8].
At this point it should be noted that a recall rate of 30% is
often sufficient to close all loops as long as the number of
false positives and mismatches is low, because several scans
are usually taken from each location.

Using td = 0.0657 instead, as determined by expectation
maximisation (Fig. 2), the result is 29.2% true positives (and
no errors). The parameters of the Gaussian mixture model
were initalized by running a maximum of 50 EM iterations
from randomly initialized start parameters and selecting the
parameters providing the best likelihood among those trials.

Using minimum loop sizeS = 0 (which entails that 100%
of the scans are overlapping) andtd = 0.0737, the result is
45.9% true positives and 0.5% mismatches.

The most difficult part of theHannover2 data set is when
the stretch H–I is revisited (scans 480–513 and 815–847).
Only a few of those scans were detected. However, there is

TABLE II

SUMMARY OF CLASSIFICATION RESULTS FOR MANUALLY SELECTEDtd .

IN ALL CASES, THERE WERE NO MISMATCHES.

Data set pos. neg. td true pos. false pos.

Hannover2 575 347 0.0737 35.3% 0%
Kvarntorp 35 95 0.0894 31.4% 1.1%

some distance between the first and second run through that
area (as may be seen from the lighter shade in the circled
area of Fig. 3(b)), so those scans only barely overlap.

The stretch E–F (scans 251–350) is revisited while travel-
ling in the opposite direction (scans 612–715). These are the
longest sequences of scans that are taken in different direc-
tions, and should give a good indication of the algorithm’s
robustness under viewpoint changes. The recall rate when
examining only E–F and F–E is 45.1% usingtd = 0.0737,
and the maximum recall rate with no errors is attained using
td = 0.0821 which gives a recall rate of 53.4%.

2) Underground mine data: Ground truth poses for the
Kvarntorp data set were provided using the algorithm pre-
sented in [9]. It is a network based global relaxation method
for 3D laser scans. To generate a genuine truth, the network
was manually given to the algorithm and the result was
visually inspected for correctness.

The loop detection algorithm described in this paper
cannot be rotation invariant if the input scans are not om-
nidirectional. When looking in opposite directions from the
same place, the view is generally very different. Because an
omnidirectional scanner was not used to recordKvarntorp,
only scans taken in similar directions were counted as
overlapping when evaluating the algorithm for this data set.
The distance matrix shown in Fig. 4(b) only shows scan pairs
that were taken with a maxiumum orientation difference of
20◦. We also chosetr = 5 m instead of 10 m. The reason
for selecting a smaller distance threshold is firstly because of
the scanner’s limited field of view and secondly because of
the more confined spaces of the mine environment. These
two factors make the appearance of scenes change more
drastically than in the open-air scans ofHannover2.

We used the same parameters for this data set as for
Hannover2, except fortd = 0.0894. The recall rate with this
td was 31.4% and there was one false positive. The ground
truth distance matrix is shown in Fig. 4(b), and the similarity
matrix of our algorithm is shown in Fig. 4(c).

C. Execution time

The experiments were run using a C++ implementation on
a laptop computer with a 1600 MHz Intel Celeron CPU and
2 GiB of RAM. For theHannover2 data set, average times for
computing the surface shape histograms were 0.18 s per call
to the histogram computation function, and in total 0.94 s
per scan to generate histograms (this includes transforming
the scan, generating~f ′ and the histograms that make upF ).
The average size ofF is 3.2 histograms. In total, 61.2 s were
spent to compute similarity measures for scan pairs. There



(a) Overview of theHannover2 data set, seen
from above with parallel projection. The robot
traveled along the sequence A–B–C–D–A–B–E–
F–A–D–G–H–I–J–H–K–F–E–L–I–K–A.
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(b) Ground truth distance matrix, showing all scan
pairs taken less than 10 m apart. The circled area
marks where H–I is revisited.
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(c) Similarity matrix, showing all scan pairs whose
difference valueσ′ < 0.0737. Because of the large
matrix and the small print size, this image has been
morphologically dilated by a3×3 element in order
to better show the values.

Fig. 3. TheHannover2 data set.

(a) Overview of theKvarntorp data set. The
robot travelled along the sequence A–B–C–D–E–
A–F–G–A–B–C–H–F–H.
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(b) Ground truth distance matrix, showing all scan
pairs taken less than 5 m apart and with an orien-
tation difference of less than 20◦.
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Fig. 4. TheKvarntorp data set.

are 922 scans in the data set, 2 947 histograms were created,
2 9472 similarity measures were computed, so the average
time per similarity comparison was around 7µs. So if each
scan requires the generation of 3.2 histograms on average,
a new scan can be compared to roughly 13 800 other scans
in one second to test for loop closure, disregarding the time
needed to compute the histograms.

The requirements for both data sets are summarised in
Table III, showing the number of scans in each data set and
the average point count per scan, as well as the average
time to create a single histogram and the average number
of histograms generated per scan. The time for creating
the histograms and the number of histograms required for
rotation invariance depend on the sizes of the point clouds,
but the time required for similarity comparisons depend only
on the number of histogram bins.

TABLE III

SUMMARY OF RESOURCE REQUIREMENTS.

Data set Scans Avg.|S| Avg. creation time Avg.|F|

Hannover2 922 15k 0.18 s 3.2
Kvarntorp 130 70k 0.27 s 2.8

IV. RELATED WORK

Previous work on loop detection has focused mostly on
data from camera images and 2D range data.

Cummins and Newman [10] have presented a bag-of-
words based method using “visual words” from camera
images. Scenes are represented as a collection of such
words (local visual features) drawn from a “dictionary” of
available features. The appearance descriptor is a binary



vector indicating the presence or absence of all words in
the dictionary. The appearance descriptor is used within a
probabilistic framework together with a generative model
that describes how informative each visual word is and
common co-occurrences of words. Cummins and Newman
have reported recall rates of 35% to 46% on urban outdoor
data sets. However, it should be noted that it is difficult to
compare recall rates from different data sets. It is not possible
to say how their method would perform in the environments
used in our experiments, and vice versa.

A method that is more similar to the approach presented
here is the 2D histogram matching of Bosse et al. [11],
[12]. While our method may also be referred to as histogram
matching, there are several differences. For example, Bosse
et al. create 2D histograms with one dimension for the spatial
distance to the scan points and one for scan orientations.
The angular histogram bins cover all possible rotations of
a scan in order to achieve rotation invariance. With the
parameters used in their papers, 240 000 histogram bins are
required for the 2D case. For unconstrained 3D motion with
angular bins for thex, y, andz axes, a similar discretisation
would lead to many millions of bins. In contrast, the 3D
histograms presented here require only a few dozens of bins.
The histogram matching of Bosse et al. is reported to work
well for the kidnapped robot problem, but they have not
provided a quantitative performance evaluation yet.

Daniel Huber has described a method based on spin-
images [13] for matching multiple 3D scans without initial
pose estimates [14]. Such global registration is closely related
to the loop detection problem. An important difference
between spin-images and the surface shape histograms pro-
posed in this paper is that spin-images are local feature
descriptors, describing the surface shape around one point. In
contrast, our surface shape histograms are global appearance
descriptors, describing the appearance of a whole 3D point
cloud. Comparing spin-images to the local PDF features used
in this work, spin-images are more descriptive and invariant
to rotation. Normal distributions are unimodal functions,
while spin-images can capture arbitrary surface shapes if the
resolution is high enough. The initial step of Huber’s multi-
view surface matching method is to compute a model graph
by using pairwise global registration with spin-images for
all scan pairs. The model graph contains potential matches
between pairs of scans, some of which may be incorrect.
Surface consistency constraints on sequences of matches are
used to distinguish correct matches from incorrect ones be-
cause it is not possible to distinguish the correct and incorrect
matches at the pairwise level. The algorithm proposed in this
paper can be seen as another way of generating the initial
model graph and evaluating a local quality measure. Using
data sets scanned from small objects with the background
removed, the recall rate of Huber’s method is up to 80%.
(Again, it should be noted that it is difficult to compare recall
rates from very different data sets.) However, the execution
time is much longer. Using data sets containing 32 scans with
1000 mesh faces each, as done by Huber, the time to compute
the initial model graph using spin-image matching can be

estimated to1.5 · 322 = 1 536 s (the complete time is not
explicitly stated in [14], but pairwise spin-image matching is
reported to require 1.5 s on average). With a data set of that
size, a rough estimate of the execution time of the algorithm
proposed in this paper is32·0.8+(32·3)2 ·7·10−6 = 26 s on
similar hardware, based on the execution times in Table III.

V. CONCLUSIONS AND FUTURE WORK

We have described a novel approach to appearance-based
place recognition using 3D range data. We have demon-
strated its performance on two real-world data sets. We can
conclude that the results are encouraging, and the perfor-
mance is comparable to that of loop detection methods using
visual data, with a recall rate of over 30% even for quite
challenging underground mine data.

The purpose of this paper is to demonstrate the perfor-
mance of the NDT-based appearance descriptor. To further
improve performance, future work should include learning a
generative model in order to learn how to disregard common,
nondiscriminative, features, based on the general appearance
of the current surroundings (see [10]).

It would also be interesting to do a more elaborate analysis
of the similarity matrix than simple thresholding in order to
better discriminate between overlapping and non-overlapping
scans. A more detailed study of useful models for finding the
difference tresholdtd would also be interesting.

Further future work should include investigating how this
approach performs when faced with dynamic changes, such
as moving furniture or people.
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[2] U. Frese and L. Schröder, “Closing a million-landmarskloop,” in
Proc. IROS, 2006, pp. 5032–5039.

[3] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard,
“Efficient estimation of accurate maximum likelihood maps in 3D,” in
Proc. IROS, 2007.

[4] P. Biber and W. Straßer, “The normal distributions transform: A new
approach to laser scan matching,” inProc. IROS, vol. 3, 2003, pp.
2743–2748.

[5] M. Magnusson, A. J. Lilienthal, and T. Duckett, “Scan registration
for autonomous mining vehicles using 3D-NDT,”J. Field Robotics,
vol. 24, no. 10, pp. 803–827, 2007.

[6] E. B. Saff and A. B. J. Kuijlaars, “Distributing many points on a
sphere,” The Mathematical Intelligencer, vol. 19, no. 1, pp. 5–11,
1997.

[7] Oct. 9 2008. [Online]. Available: http://kos.informatik.uni-osnabrueck.
de/3Dscans/

[8] M. Cummins and P. Newman, “Accelerated appearance-onlySLAM,”
in Proc. ICRA, 2008.

[9] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and
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