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Abstract— We consider the problem of objects exploration
for grasping purposes, specifically in cases where vision based
methods are not applicable. A novel dual-hand object explo-
ration method is proposed that takes benefits from a human
demonstration to enrich knowledge about an object. The user
handles an object freely using both hands, without restricting
the object pose. A set of grasp-related features obtained during
exploration is demonstrated and utilized to generate grasp
oriented bounding boxes that are basis for pre-grasp hypothesis.
We believe that such exploration done in a natural and
user friendly way creates important link between an operator
intention and a robot action.

I. I NTRODUCTION

Mastering robot grasping capabilities have been always
considered of major importance since this skill allows to
execute other more complicated tasks. Thus, the robot ability
to perform stable grasps is a fundamental. There were many
approaches that addressed problem of robot grasping but
each of theme suffer from some drawbacks that our solution
tries to solve.

In the group of approaches that the 3D model of an object
is known various methods based on friction cones [1] or
form- and force-closure criteria can be applied to perform
stable grasps. However, mostly a priori knowledge is not
available or it lacks informations about object propertieslike
surface texture or mass center.

A lot of work has been done in the area of visual object
recognition and modeling for grasping. For example, [2]
presents a learning algorithm for grasps prediction for paral-
lel gripper based on 2D images. Other authors [3], [4] try to
estimate most stable grasping points for multi-fingered hands
based on different vision systems and grasp stability criteria.
In [5], [6] a method for pre-grasp selection is proposed by
decomposing object shape into minimum bounding boxes.
However, the robustness of vision based methods to object
recognition and localization is compromised if visual clues
are absent or in cluttered environment. In addition it is not
possible to obtain the information about the object mass or
its surface friction solely based on vision based recognition,
without interaction with the environment.

Some of the mentioned vision problems are solvable using
active exploration. Interactive robot perception has been
studied in [7] where a robot manipulates the environment
to obtain properties of an object (kinematic model). How-
ever, such autonomous exploration is still far from human

exploration capabilities. Thus, a human demonstration based
approach has clear advantages.

A Programming by Demonstration (PbD) approach (see
[8] for a recent overview) has been popular especially in
area of programming grasping and manipulation tasks [9],
[10], [11], [12]. A variety of human tracking devices have
been used, following [13], the most popular one due to its
robust and accurate hand pose acquisition is a data glove.
A double glove experimental setup has been used by [14]
for programming of dual-arm manipulation tasks. In [15] the
posture of a bare human hand is tracked for grasp acquisition
using a camera. Additional hardware is not necessary but the
vision system requires careful presentation planning to make
the hand and the object visible.

In the light of the adduced work, to overcome the draw-
back of vision based methods and utilize the benefits of
human demonstration, we propose a novel approach to object
modelling, by dual-hand human tactile exploration. In this
way the knowledge about the object is extended by a set of
features that captures the human way of object handling.

In this work we let the user present an object freely
using both hands, without restricting the object pose, with
only hardware constraints that imply that all grasps must
be fingertip grasps. The proposed exploration method takes
advantage of the fact that a human operator usually uncon-
sciously simplifies the grasping task by selecting one of only
a few different prehensile postures appropriate for a given
object and task. In this way the problem searching space is
limited to a set of most plausible grasping approaches.

The humans act differently depending on object shape
and handling task [16]. Proposed exploration method is not
directed on emphasizing the geometry of an object where
the operator would rather intentionally focus on showing
significant features of the target like edges, corners, round-
ness. This can be done much better using vision systems and
3D scanning. Our method is focused on capturing features
important for object handling in pick and place scenarios
that are hardly available using vision. Moreover, it is a
useful extension for all vision based method and mixing
them together should provide very robust grasping oriented
recognition system.

The remainder of this paper is structured as follows.
In Section II our experimental setup, the employed sensor
devices and the experimental scenario it is presented. Section
III details the proposed exploration algorithm. Section IV
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introduces a clustering algorithm for detection of graspable
region and grasp related features extraction method. Finally,
Section V presents experimental results and an evaluation of
the accuracy of the object pose. Section VI concludes the
paper with a summary and a discussion of future work.

II. EXPERIMENTAL SETUP

To register a human demonstration robustly and efficiently
proper experimental setup is needed. The system should
fulfill two main requirements, firstly, acquire of the con-
figurations of two hands in real-time, secondly, it should
allow the user to explore an object in natural and convenient
way. For this reason in our setup a vision basedPhaseSpace
motion capturesystem [17] for human hands tracking has
been used.

The advantages of the system are high accuracy and
sampling rate, robustness to changing light conditions and, in
contrast to 2D- and 3D vision methods, it allows exploration
of objects without assumptions of any specific visual clues.
Of course, it suffers from occlusion as any other vision based
system.

A. Sensor Gloves

To let the user explore an object fast and freely two gloves
are used. Each glove has nine diodes and five force sensing
resistors (FSR) used as tactile sensors emplace on the glove
as depicted on Fig. 1.

Fig. 1. Motion capture gloves with diodes and FSR tactile sensors
emplacement.

Each diode blinks in a unique pattern that can be identify
and its 3D position is tracked using a set of five stereo
cameras placed around the working area (see Fig. 2). The
camera positions are arranged so they cover most of the
working space.

As a glove enhancement, we attached passive tactile
sensors (FSR) to the glove fingertips which, as presented
in [18], are good enough to detect grasp actions. Since the
tactile sensors are placed only on the fingertips only precision
grasps can be registered. Some remarks about the sensor
use have to be made. Despite quite large sensor surface,
the material rigidness and sensor emplacement allows only
prismatic like grasps. The tactile sensors are rather slippery
so the operator has to grasp firmly during all experiments and
rather choose rough surfaces. This fact has also an advantage

because obtain grasping regions are characterized by good
grip.

The data from both the motion capture system and the
tactile sensors is visualized so the operator can easily seeon-
line how the object is represented and what is the algorithm’s
interpretation of human demonstrations. Though motion cap-
ture system allows to capture data with frequency of480Hz

our system capability due to accuracy improvements and
visualization rendering is reduced to25Hz.

B. Assumption

Several assumptions about the demonstration and obtained
information has to be made.

A1 The demonstration is aimed at presenting grasping
possibilities for handling tasks.

A2 The human hand, while holding an object is considered
as a rigid body. As performed experiments have shown
the human hand (excluding wrist) tends to act as a
rigid body when performing grasping tasks. Thus the
wrist diode is not considered as a part of the hand
configuration.

A3 No vision system for object tracking has been used.
A4 All grasps performed by human are stable, static,

precision grasps according to force closure criterion.
A5 A grasp is collected if at least the thumb and three

other fingers are in contact with an object.
A6 No assumption neither about an object size or geome-

try, nor about gripper that will be used are made.

C. Experiment scenario

An Operator picks an object of interest from the table
and handles it freely using both hands. The collected point
cloud appears on the screen so a visual feedback is possible.
Resultant data is then clustered and grasp-related features are
associated with the object. The two main steps of the method
are briefly described below.

Fig. 2. On the left object exploration using two gloves with two
motion capture cameras in the background. On the right schematic object
exploration sequence with collected points marked red.

1) Object exploration:The whole exploration consists of
a sequence of fingertip grasps registered by the tactile sensors
and the motion capture system. During the manipulation
atom setsof points, that each represents separate, fingertip



grasp, are collected. Because the user is allowed to change
the holding hand, a transformation between grasps is calcu-
lated to keep all points in a one object coordinate frame.
This calculation is possible because a human hand holding
an object is treated as a rigid body. To reinforce the rigid
body assumption and improve accuracy of transformations
averaging techniques, presented in later sections, have been
used. Object exploration is described in details in III.

2) Features extraction:Resulting data from the object
exploration step is a collection of atom point sets that
together create 3D point cloud. The point cloud is sparse, so
only rough deduction about the object geometry is possible,
however it is good enough to show graspable regions on the
object surface. Moreover, a human way of approaching the
object is captured in collected data. Atom sets are firstly
clustered into separate graspable regions -bodies. Secondly,
for every grasp anapproach vectorand associated with it
grasp oriented bounding box(GOBB), that bounds all points
that belong to the same body, are generated. The method
for generation of approach vectors and GOBBs is described
in Section IV. As a result, the object is approximated
with a set of overlapping GOBB with respective approach
vectors. Bounding box has been chosen as an approximation
primitive, however, such fitting can also be done with other
primitives like cylinders or spheres.

III. O BJECT EXPLORATION

A. Point cloud building
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Fig. 3. Time line with periods of one-hand- and dual-hand-grasps.
Transformations necessary to keep all points in one object coordinate frame.

During the exploration a 3D point cloud is obtained that
represents an approximate geometry of the object. The object
can be lifted from the table and the operator is allowed to
translate and rotate it freely using both hands, thus, an algo-
rithm that keeps all collected points in one object coordinate
frame is necessary. As Fig. 3 depicts the exploration contains
a sequence of grasps alternately using left or right hand, with
intermediate states in between when both hands hold the
object. The goal is to collect grasping points and calculatea
sequence of transformations that models object move.

Let us describe this exploration as a sequence of overlap-
ping states

G = {GOne
1 , GOne

2 , . . . , GOne
i , . . . , GOne

n }, (1)

where GOne
i indicates thei − th consecutive time period

when one-hand grasp is performed on the object. Addition-
ally, two-hand grasp state

GTwo
i = GOne

i ∧ GOne
i+1 , (2)

is defined for cases when both hands holds the object. Let us
definel = [x, y, z]T as a diode coordinate in global reference

frame. The hand configuration in the stateGOne
i is described

as a set of 9 diodes coordinates

hi = {lj|j = 1, . . . , 9}, (3)

where each positionlj corresponds to diodej on the glove.
Let us denotêhi as an average hand configuration which will
be basis for further calculations in this section. Method of
obtaining ĥi based on a fewhi configuration is described
later in section III-B.

Through the whole time period when only one hand is in
contact (stateGOne) neither hand configuration, relative to
the object, nor contact points change. Thus, it is sufficient
to collect only one hand configuration̂hi for every state
GOne

i . It is reasonable to collect this hand configuration at the
stateGTwo

i when it overlaps withGOne
i , because two hand

grip increase rigidness of the grasp and improve precision of
further transformation calculations.

The transformation matrixTi between every two hand
configurationsĥi−1 and ĥi from consequent statesGTwo

i−1

andGTwo
i , has to be calculated. Since coordinates of diodes

in global reference frame and their correspondence between
hand configurations are known our problem becomes to
determine unknown transformationTi of the Least Squares
(LS) problem

ĥ′
i ≈ Tiĥ′

i−1, (4)

where ĥ′
i and ĥ′

i−1 are selections of those diodes that are
visible in both configurationŝhi and ĥi−1. An algorithm
that solves this problem using singular value decomposition
(SVD), as described in [19], has been used.

Point cloud building can be seen as an iterative process,
where in every stateGTwo

i an atom point cloud, that contains
positions of diodes of fingers that are in contact with an
object and are visible, is saved. Atom point cloud is denoted
as

Ai = {f , . . . , fr}, Ai ⊂ ĥi, 3 < r ≤ 5, (5)

wheref is a diode position of a visible finger in contact,r is a
number of such fingers. All previously collected points have
to be transformed into the actual frame. Let us finally denote
Pi as a set that contains all points: previously collected and
transformed to the actual statei and newly saved atom point
cloud.

Pi = {P ′

i−1, Ai}, (6)

where
P ′

i−1 = Ti · Pi−1, (7)

B. Accuracy improvements

There are two main sources of errors in transformation
calculations that should be eliminated. Firstly, Least Square
fitting works well only if a diode position, relative to other
diodes, doesn’t change between hand configurationsĥi−1

andĥi. Secondly, calculations might be impossible if number
of diodes visible in both configurations is smaller than three.

It has been noticed during experiments that even when
the grasp is firm and stable, the hand makes moves, im-
perceptible for a human, but significant enough to make



transformation calculations inaccurate. Thus, wrist diode has
been discarded in transformation calculation, because its
position changes significantly. For the rest of the diodes,
averaging algorithms presented below were applied.
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Fig. 4. TransformationTi in detail. Example selection of hand configura-
tions for averaging process and inter hand configuration depicted.

1) Key hand configuration averaging:In the time period
STwo

i k hand configurations with the greatest number of
visible diodes are selected and an average hand configuration
ĥi is calculated on them (see Fig. 4)

ĥi =
1

k

k
∑

j

T jkh
j
i , (8)

whereT jk is transformation matrix, calculated using men-
tioned LS fitting, between hand configurationhj andhk.

2) Inter hand configurations:Another implemented ac-
curacy improvement is to findm intermediate hand config-
urationshI between statesGTwo

i−1 and GTwo
i and calculate

transformationTi as a mean of transformations that go
through these intermediate hand configurations

Ti =
1

m

n
∑

t=1

T (It)(i)T (i−1)(It), (9)

whereT (Il)(i) is a transformation matrix between handhi

andht
I . LS fitting algorithm has been used also in this case.

3) Gloves calibration: Diodes that the motion capture
system tracks are mounted on the finger nails on the outer
side of the hand. This means that all tracked positions are
measured with an offset between a diode center and a real
finger contact point. It is removed by applying calibration
strategy in which operator touches a table surface with
previously know plane equation. Normal to plane distance
between diodes positions and the table surface is calculated.
Obtained offset values allow to estimate contact points with
an objectf ′

j as depicted on Fig. 5.

IV. FEATURES EXTRACTION

In this section a method for extracting grasp-related fea-
tures is presented. It utilizes point cloud collected with
the method presented in Section III. Firstly, distinguishable
graspable regions of an object are detected -bodies, sec-
ondly, human-like approach vectors are found, finallygrasp
oriented bounding boxesare generated. All those features are
associated with the explored object.

A. Points clustering

In order to distinguish between different graspable parts of
the object and to segment collected contact points clusteriza-
tion of atom point clouds is performed. To do that parameters
on which clusterization is based have to be calculated.

For every atom point cloudAi that contains thumb po-
sition a grasp directionDi is defined as the first principle
component vector of a set of middle points

M = {mj |j = 1 . . . r − 1}, (10)

wheremj is a middle point between the thumb and a finger
j (see Fig.5). Agrasp centerci is defined as a mean value

ci =
1

r − 1

r−1
∑

j=1

mj . (11)

Then all atom point clouds are segmented using unsupervised
nearest neighbor clustering algorithm in two steps. Firstly,
based on angle between grasp directions measured as an
absolute value of cosine between two grasp direction vectors
Da andDb

d =

∣

∣

∣

∣

Da · Db

‖Da‖‖Db‖

∣

∣

∣

∣

, (12)

and secondly, based on Cartesian distance between grasp
centers. Threshold values have been chosen empirically to
20 deg and80mm respectively. As a result, the point cloud
P is clustered into separate segments -bodies, that each will
be later approximated using primitive shape.
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Fig. 5. An example of one-hand grasp with 4 fingers visible projected
onto the plane.f - diodes positions marked red;f ′ - estimated contact
points after calibration applied marked green;Di - grasp direction,ci -
grasp center.

B. Approach vectors

One of the advantages derived from a human exploration is
a set of human-like approach vectors that is assigned to every
body segment obtained in clusterization process. As depicted
on Fig. 6 every single grasp, as long as proper diodes have
been seen, has assigned approach vector which has its initial
point ai calculated as

ai =
lh1+lh2

2 + lw

2
, (13)

where lh1, lh2 are mid-hand diodes andlw denote a wrist
point. The approach vector is oriented towards grasp center
ci.
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Fig. 6. Schematic single grasp and corresponding real hand configuration.
Hand direction (Di), hand center point (ci), finger contact points (f ′) and
approach vector depicted.

C. Grasp oriented bounding boxes

ai

ci

v1

v2

Fig. 7. An example of grasp oriented bounding box in 2D. Principle vectors
v1, v2 marked red.

For every performed grasp, that has the approach vector
and the grasp center, an GOBB is generated that bounds
all contact points of a given body (see Fig. 7). To obtain
its orientation a set of orthogonal vectors is calculated. The
first principle vector is common for all grasps from a given
body. It is obtained by taking the first principle component of
a set of grasp centers from given body. The second principle
vector is defined as a perpendicular to the first one, going
through the initial pointai of the approach vector. The third
vector is orthogonal to previous two. As a result for every
segmented body multiple GOBBs are generated. It represents
approach choices natural for a human that might be also
considered as a pre-grasp states in grasping tasks.

V. EXPERIMENTS

A set of experiments has been performed to check per-
formance of described methods of exploration and grasp-
related features extraction. Variety of common objects like:
bottle, hammer, drill, phone receiver, orange or book have
been chosen to demonstrate how the method behaves for
different shapes. Selection of the results of performed exper-
iments is depicted in Fig. 8. Proposed algorithm for features
extraction works well for different types of objects and gives

a suggestion about how an object should be grasped. A few
comments about performed experiments can be found below.

GOBB decomposition is not view-dependent as in vision
based methods but it is grasp-dependent. Thanks to free
manipulation, generated bounding boxes envelope also these
parts that might be invisible in visual exploration. At the
same time, they bound only those parts that have been
touched. Fig. 8(f) shows that the operator explored mainly
the hammer shaft, since only this part has rubber surface
that is easy to hold, especially using our gloves with slippery
tactile sensors.

As presented in Fig. 8(d) and Fig. 8(e) segmentation
divides objects into separated bodies that describe roughly
object shape. We can distinguish two bodies of the phone
receiver. It is even more noticeable in the case of a drill where
the object is also divided into two bodies that correspond to
drill core and handle. Notice that both bodies have complete
different approach vectors characteristic. The vectors for drill
handle part are very consistent and suggest only one way of
grasping this part. In the same time, approach vectors for
the cylindrical core of the drill are much more spread and
no strict approach is suggested.

Obtained features like approach vectors, size, rough shape
should be considered as basis for pre-grasp generation.
Besides, some clues about object intrinsic properties like
surface texture, graspable regions are acquired. Although
they are just clues, they can be useful in planning of grasping
and manipulation tasks.

A. Object pose error

To evaluate the accuracy of calculated transformations, an
error of object pose in global coordinate frame has been
checked. To do that a cylindrical bottle has been explored
for at least ten grasps and then placed on the table in
the origin of the global coordinate system. In series of
ten experiments biggest position error was not greater than
0.5cm and orientation error not greater than7 deg.

VI. CONCLUSION AND FUTURE WORKS

This paper presents a novel, dual hand object exploration
method. It is oriented towards grasp-related features extrac-
tion such like human-like approach vectors, size, rough shape
which can be basis for pre-grasp calculation. The presented
method for two hands exploration is fast since only one
demonstration is enough to point out key features of an
object. It is also a human intuitive which is be especially
important for the end user. Accuracy tests have shown that
the method is reliable enough to find explored object after
the demonstration and can be used even without any vision
system. However, as pointed out at the beginning, integrating
of both together will make this system complete and both part
will supplement each other. A question regard utilization of
grippers with size and grasp model different from human
hand stays open and should be considered as a research
continuation. Further work include grasp experiments using
an anthropomorphic artificial hand e.g. the KTHand [20]
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Fig. 8. Sample experiment results with corresponding real objects pictures. Grasp oriented bounding boxes (black lines) and approach vectors (blue
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and integrating the presented system with a visual object
recognition system.

REFERENCES

[1] M. Mason and J. K. Salisbury,Robot Hands and the Mechanics of
Manipulation. Cambridge, MA: MIT Press, 1985.

[2] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel
objects using vision,”Int. J. Rob. Res., vol. 27, no. 2, pp. 157–173,
2008.

[3] T. Yoshikawa, M. Koeda, and H. Fujimoto, “Shape recognition and
grasping by robotic hands with soft fingers and omnidirectional
camera,” inRobotics and Automation, 2008. ICRA 2008. IEEE In-
ternational Conference on, May 2008, pp. 299–304.

[4] A. Morales, P. J. Sanza, Angel, and A. H. Fagg, “Vision-based three-
finger grasp synthesis constrained by hand geometry,”Robotics and
Autonomous Systems, vol. 54, no. 6, pp. 496–512, 2006.

[5] K. Huebner and D. Kragic, “Selection of robot pre-graspsusing box-
based shape approximation,”Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, pp. 1765–1770,
Sept. 2008.

[6] K. Huebner, S. Ruthotto, and D. Kragic, “Minimum volume bound-
ing box decomposition for shape approximation in robot grasping,”
Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on, pp. 1628–1633, May 2008.

[7] D. Katz and O. Brock, “Manipulating articulated objectswith inter-
active perception,”Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, pp. 272–277, May 2008.

[8] A. Billard and R. Siegwart, “Robot learning from demonstration,”
Robotics and Autonomous Systems, vol. 47, no. 2-3, pp. 65–67, 2004.
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