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Abstract— We consider the problem of objects exploration exploration capabilities. Thus, a human demonstratioedas
for grasping purposes, specifically in cases where vision bad  approach has clear advantages.
methods are not applicable. A novel dual-hand object explo- A Programming by Demonstration (PbD) approach (see

ration method is proposed that takes benefits from a human gl f ¢ . has b | allv i
demonstration to enrich knowledge about an object. The user [8] for a recent overview) has been popular especially in

handles an object freely using both hands, without restrighg ~ area of programming grasping and manipulation tasks [9],
the object pose. A set of grasp-related features obtained ding ~ [10], [11], [12]. A variety of human tracking devices have
exploration is demonstrated and utilized to generate grasp peen used, following [13], the most popular one due to its
oriented bounding boxes that are basis for pre-grasp hypotesis.  ,hust and accurate hand pose acquisition is a data glove.

We believe that such exploration done in a natural and A double d . tal setup has b d by 114
user friendly way creates important link between an operato ouble glove experimental setup has been used by [14]

intention and a robot action. for programming of dual-arm manipulation tasks. In [15] the
posture of a bare human hand is tracked for grasp acquisition
|. INTRODUCTION using a camera. Additional hardware is not necessary but the

vision system requires careful presentation planning tkema

Mastering robot grasping capabilities have been alwayfe hand and the object visible.
considered of major importance since this skill allows to |n the light of the adduced work, to overcome the draw-
execute other more complicated tasks. Thus, the robotyabilipack of vision based methods and utilize the benefits of
to perform stable grasps is a fundamental. There were mafAMman demonstration, we propose a novel approach to object
approaches that addressed problem of robot grasping kHbdelling, by dual-hand human tactile exploration. In this
each of theme suffer from some drawbacks that our solutiagay the knowledge about the object is extended by a set of
tries to solve. features that captures the human way of object handling.

In the group of approaches that the 3D model of an object In this work we let the user present an object freely
is known various methods based on friction cones [1] alising both hands, without restricting the object pose, with
form- and force-closure criteria can be applied to perforranly hardware constraints that imply that all grasps must
stable grasps. However, mostly a priori knowledge is nde fingertip grasps. The proposed exploration method takes
available or it lacks informations about object properliks  advantage of the fact that a human operator usually uncon-
surface texture or mass center. sciously simplifies the grasping task by selecting one of onl

A lot of work has been done in the area of visual objeca few different prehensile postures appropriate for a given
recognition and modeling for grasping. For example, [2bbject and task. In this way the problem searching space is
presents a learning algorithm for grasps prediction foajpar limited to a set of most plausible grasping approaches.
lel gripper based on 2D images. Other authors [3], [4] try to The humans act differently depending on object shape
estimate most stable grasping points for multi-fingeredisan and handling task [16]. Proposed exploration method is not
based on different vision systems and grasp stabilityrézite directed on emphasizing the geometry of an object where
In [5], [6] a method for pre-grasp selection is proposed byhe operator would rather intentionally focus on showing
decomposing object shape into minimum bounding boxesignificant features of the target like edges, corners, deun
However, the robustness of vision based methods to objamtss. This can be done much better using vision systems and
recognition and localization is compromised if visual due 3D scanning. Our method is focused on capturing features
are absent or in cluttered environment. In addition it is ndinportant for object handling in pick and place scenarios
possible to obtain the information about the object mass dhat are hardly available using vision. Moreover, it is a
its surface friction solely based on vision based recogmjti useful extension for all vision based method and mixing
without interaction with the environment. them together should provide very robust grasping oriented

Some of the mentioned vision problems are solvable usirrgcognition system.
active exploration. Interactive robot perception has been The remainder of this paper is structured as follows.
studied in [7] where a robot manipulates the environmernh Section Il our experimental setup, the employed sensor
to obtain properties of an object (kinematic model). Howdevices and the experimental scenario it is presentedio8ect
ever, such autonomous exploration is still far from humahl details the proposed exploration algorithm. Section IV
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introduces a clustering algorithm for detection of graspabbecause obtain grasping regions are characterized by good
region and grasp related features extraction method. lfzinalgrip.
Section V presents experimental results and an evaluation o The data from both the motion capture system and the
the accuracy of the object pose. Section VI concludes thactile sensors is visualized so the operator can easilgsee
paper with a summary and a discussion of future work. line how the object is represented and what is the algorighm’
interpretation of human demonstrations. Though motion cap
Il. EXPERIMENTAL SETUP ture system allows to capture data with frequency&fH =

To register a human demonstration robustly and eﬁicientl?,ur syste_m capabll_lty f’“e to accuracy improvements and
proper experimental setup is needed. The system sholfiffualization rendering is reduced @54 z.
fglfill tyvo main requiremepts, firstlly, acquire of t_he Con-g - Assumption
figurations of two hands in real-time, secondly, it should i ) ,
allow the user to explore an object in natural and convenient Several assumptions about the demonstration and obtained
way. For this reason in our setup a vision baBédseSpace Information has to be made.
motion capturesystem [17] for human hands tracking has A1 The demonstration is aimed at presenting grasping

been used. possibilities for handling tasks.
The advantages of the system are high accuracy and\2 The hpr_nan hand, while holding an o_bject is considered
sampling rate, robustness to changing light conditions iand as a rigid body. As performed experiments have shown

contrast to 2D- and 3D vision methods, it allows exploration ~ the human hand (excluding wrist) tends to act as a
of objects without assumptions of any specific visual clues.  rigid body when performing grasping tasks. Thus the
Of course, it suffers from occlusion as any other vision Hase ~ Wrist diode is not considered as a part of the hand

system. configuration.
A3 No vision system for object tracking has been used.
A. Sensor Gloves A4 All grasps performed by human are stable, static,

precision grasps according to force closure criterion.
5 A grasp is collected if at least the thumb and three
other fingers are in contact with an object.
No assumption neither about an object size or geome-
try, nor about gripper that will be used are made.

To let the user explore an object fast and freely two gloves
are used. Each glove has nine diodes and five force sensing
resistors (FSR) used as tactile sensors emplace on the g|0\{£

: . 6
as depicted on Fig. 1.

C. Experiment scenario

An Operator picks an object of interest from the table
and handles it freely using both hands. The collected point
cloud appears on the screen so a visual feedback is possible.
Resultant data is then clustered and grasp-related fezduee
associated with the object. The two main steps of the method
are briefly described below.

Fig. 1.  Motion capture gloves with diodes and FSR tactileseen
emplacement.

Each diode blinks in a unique pattern that can be identify
and its 3D position is tracked using a set of five stereo
cameras placed around the working area (see Fig. 2). The
camera positions are arranged so they cover most of the
working space.

As a glove enhancement, we attached passive tactile
sensors (FSR) to the glove fingertips which, as presented
n [:!'8]’ are good enough to detect gr_asp a.CtlonS' S.'”C(.e trIlleg 2. On the left object exploration using two gloves witlvot
tactile sensors are placed only on the fingertips only pi@tis motion capture cameras in the background. On the right satierobject
grasps can be registered. Some remarks about the sens@foration sequence with collected points marked red.
use have to be made. Despite quite large sensor surface,
the material rigidness and sensor emplacement allows only1) Object exploration:The whole exploration consists of
prismatic like grasps. The tactile sensors are rather alipp a sequence of fingertip grasps registered by the tactil®sens
so the operator has to grasp firmly during all experiments arahd the motion capture system. During the manipulation
rather choose rough surfaces. This fact has also an adeantatpm setsof points, that each represents separate, fingertip




grasp, are collected. Because the user is allowed to charfgeme. The hand configuration in the statg™* is described

the holding hand, a transformation between grasps is calcas a set of 9 diodes coordinates

lated to keep all points in a one object coordinate frame. )

This calculation is possible because a human hand holding hi={llj=1,...,9}, ®)

an object is treated as a rigid body. To reinforce the rigigyhere each positiot; corresponds to diodg on the glove.

body assumption and improve accuracy of transformationst us denoté; as an average hand configuration which will

averaging techniques, presented in later sections, ha® bgye pasis for further calculations in this section. Method of

used. Object exploration is described in details in IlI. obtaining h; based on a few:; configuration is described
2) Features extraction:Resulting data from the object |5ter in section I1I-B.

exploration step is a collection of atom point sets that Thrgugh the whole time period when only one hand is in

together create 3D point cloud. The point cloud is sparse, $@ntact (state5°"¢) neither hand configuration, relative to

only rough deduction about the object geometry is possiblgne gbject, nor contact points change. Thus, it is sufficient

however it is good enough to show graspable regions on thg collect only one hand configuratioh; for every state

object surface. Moreover, a human way of approaching thgone |tjs reasonable to collect this hand configuration at the

object is captured in collected data. Atom sets are firstlyiate GTwe when it overlaps withG9™¢, because two hand

clustered into separate graspable regiobsdies Secondly, qrip increase rigidness of the grasp and improve precision o
for every grasp arapproach vectorand associated with it f,rther transformation calculations.

grasp oriented bounding bd@@OBB), that bounds all points  The transformation matrixt; between every two hand
that belong to the same body, are generated. _The m?th%figurationsfzi_l and h; from consequent state§7e

for generation of approach vectors and GOBBSs is describgghgG7we, has to be calculated. Since coordinates of diodes
in Section IV. As a result, the object is approximateqy giobal reference frame and their correspondence between
with a set of overlapping GOBB with respective approachang configurations are known our problem becomes to

vectors. Bounding box has been chosen as an approximati@germine unknown transformatiah of the Least Squares
primitive, however, such fitting can also be done with othef| s) problem

primitives like cylinders or spheres. W~ Ty, 4)
I1l. OBJECTEXPLORATION Wherei{’i and ﬁ’i,l are selections of those diodes that are
A. Point cloud building visible in both configurations:;; and h;_;. An algorithm
that solves this problem using singular value decompasitio
(SVD), as described in [19], has been used.

Point cloud building can be seen as an iterative process,
where in every stat&’° an atom point cloud, that contains
positions of diodes of fingers that are in contact with an

object and are visible, is saved. Atom point cloud is denoted
Fig. 3.  Time line with periods of one-hand- and dual-hanasps. g
Transformations necessary to keep all points in one ob@mtdinate frame.

Ai:{fv"'afT}v A’Lcﬁzv 3<7’§5, (5)

During the exploration a 3D point cloud is obtained thagheref is a diode position of a visible finger in contacis a
represents an approximate geometry of the object. The bjeg, mper of such fingers. All previously collected points have
can be lifted from the table and the operator is allowed g, pe transformed into the actual frame. Let us finally denote
translate and rotate it freely using both hands, thus, ap-algp, a5 a set that contains all points: previously collected and

rithm that keeps all collected points in one object coortfina iy ansformed to the actual statand newly saved atom point
frame is necessary. As Fig. 3 depicts the exploration costai |4 4.

a sequence of grasps alternately using left or right harti, wi P ={P, A} (6)

intermediate states in between when both hands hold the e ’

object. The goal is to collect grasping points and calcutate where

sequence of transformations that models object move. P, =T, P_, @)
Let us describe this exploration as a sequence of overl

ping states ) . .
G — {GOne, GOne (One GOner ) There_ are two main sourc_es_of errors in transformation
T o2 e M e M Iy calculations that should be eliminated. Firstly, Leasteé8qu
where G9"¢ indicates thei — th consecutive time period fitting works well only if a diode position, relative to other
when one-hand grasp is performed on the object. Additiorghodes, doesn't change between hand configurations
ally, two-hand grasp state andh,. Secondly, calculations might be impossible if number
GTwo _ :One 5 One @ of diodes visible in both configurations is smaller than ¢are
v v il It has been noticed during experiments that even when
is defined for cases when both hands holds the object. Let thee grasp is firm and stable, the hand makes moves, im-
definel = [z, v, 2] as a diode coordinate in global referenceperceptible for a human, but significant enough to make

8 Accuracy improvements



transformation calculations inaccurate. Thus, wrist dibds A. Points clustering

been discarded in transformation calculation, because its|y order to distinguish between different graspable pdfts o
position changes significantly. For the rest of the diodegne object and to segment collected contact points clasteri
averaging algorithms presented below were applied. tion of atom point clouds is performed. To do that parameters

\ / o on which clusterization is based have to be calculated.
hiy...hi hi...h§

L For every atom point cloudi; that contains thumb po-
|| time sition agrasp directionD; is defined as the first principle
R || component vector of a set of middle points
T M={m;lj=1...r -1}, (10)
wherem; is a middle point between the thumb and a finger
j (see Fig.5). Agrasp centere; is defined as a mean value
1 r—1
Fig. 4. Transformatior?; in detail. Example selection of hand configura- € = r—1 Z - (11)
tions for averaging process and inter hand configuratiorictizp Jj=1

Then all atom point clouds are segmented using unsupervised
1) Key hand configuration averagingn the time period nearest neighbor clustering algorithm in two steps. Hirstl
STwe | hand configurations with the greatest number opased on angle between grasp directions measured as an
visible diodes are selected and an average hand configurat@solute value of cosine between two grasp direction vector

h; is calculated on them (see Fig. 4) D, and D,
Da : Db
k d= |l (12)
B — lZTjkhj ®) [ DallllDs]l
kL v and secondly, based on Cartesian distance between grasp
J

centers. Threshold values have been chosen empirically to
where 7% is transformation matrix, calculated using men=20 deg and80mm respectively. As a result, the point cloud
tioned LS fitting, between hand configuratibh and *. P is clustered into separate segmenidies that each will

2) Inter hand configurationsAnother implemented ac- Pe later approximated using primitive shape.
curacy improvement is to fineh intermediate hand config-
urationsh; between states:7° and G7*° and calculate
transformation7; as a mean of transformations that go
through these intermediate hand configurations

n

1 N
T = LN @ pli-n) 9
~3 , (©)

t=1

where 7)) js a transformation matrix between hahg
andht. LS fitting algorithm has been used also in this case.

3) Gloves calibration: Diodes that the motion capture
system tracks are mounted on the finger nails on the outer
side of the hand. This means that aII_tracked positions afe ., example of one-hand grasp with 4 fingers visiblejamied
measured with an offset between a diode center and a r%ﬂ%o the plane.f - diodes positions marked re¢?’ - estimated contact
finger contact point. It is removed by applying calibratiorpoints after calibration applied marked gree; - grasp direction,c; -
strategy in which operator touches a table surface witf{2sP center
previously know plane equation. Normal to plane distance
between diodes positions and the table surface is calculatd®- APProach vectors
Obtained offset values allow to estimate contact pointe wit One of the advantages derived from a human exploration is

an objectf; as depicted on Fig. 5. a set of human-like approach vectors that is assigned ty ever
body segment obtained in clusterization process. As dagpict
IV. FEATURES EXTRACTION on Fig. 6 every single grasp, as long as proper diodes have

In this section a method for extracting grasp-related feab_een seen, has assigned approach vector which has it$ initia

tures is presented. It utilizes point cloud collected meomt a; calculated as

the method presented in Section Ill. Firstly, distingulslea o — li“—glbi + 1y (13)
graspable regions of an object are detectdubédies sec- e 2 ’

ondly, human-like approach vectors are found, fingitgsp wherely;, 152 are mid-hand diodes anl, denote a wrist
oriented bounding boxeme generated. All those features argoint. The approach vector is oriented towards grasp center
associated with the explored object. ;.



a suggestion about how an object should be grasped. A few
comments about performed experiments can be found below.
GOBB decomposition is not view-dependent as in vision
based methods but it is grasp-dependent. Thanks to free
manipulation, generated bounding boxes envelope alse thes

parts that might be invisible in visual exploration. At the

same time, they bound only those parts that have been
touched. Fig. 8(f) shows that the operator explored mainly
the hammer shaft, since only this part has rubber surface

Fig. 6. Schematic single grasp and corresponding real hanfiigaration. ; ; ; ; :
Hand direction [;), hand center pointc(), finger contact points (') and that is easy to hold, especially using our gloves with siigpe

approach vector depicted. tactile sensors.
As presented in Fig. 8(d) and Fig. 8(e) segmentation

divides objects into separated bodies that describe rgughl
C. Grasp oriented bounding boxes object shape. We can distinguish two bodies of the phone
receiver. It is even more noticeable in the case of a drillnehe
the object is also divided into two bodies that correspond to
drill core and handle. Notice that both bodies have complete
different approach vectors characteristic. The vectargifidl
handle part are very consistent and suggest only one way of
grasping this part. In the same time, approach vectors for
the cylindrical core of the drill are much more spread and
no strict approach is suggested.

Obtained features like approach vectors, size, rough shape
should be considered as basis for pre-grasp generation.
Besides, some clues about object intrinsic properties like
surface texture, graspable regions are acquired. Although
they are just clues, they can be useful in planning of graspin
and manipulation tasks.

A. Obiject pose error

Fig. 7. An example of grasp oriented bounding box in 2D. Rpiecvectors To evaluate the accuracy of calculated transformations, an
v1, v2 Marked red. error of object pose in global coordinate frame has been
checked. To do that a cylindrical bottle has been explored
For every performed grasp, that has the approach vectigr at least ten grasps and then placed on the table in
and the grasp center, an GOBB is generated that boungt® origin of the global coordinate system. In series of
all contact points of a given body (see Fig. 7). To obtainen experiments biggest position error was not greater than
its orientation a set of orthogonal vectors is calculatdue T 0.5¢m and orientation error not greater th@deg.
first principle vector is common for all grasps from a given
body. It is obtained by taking the first principle componeint o VI. CONCLUSION AND FUTURE WORKS
a set of grasp centers from given body. The second principle
vector is defined as a perpendicular to the first one, goinrgI
through the initial pointz; of the approach vector. The third .
vector is orthogonal to previous two. As a result for ever
segmented body multiple GOBBs are generated. It represe
approach choices natural for a human that might be al
considered as a pre-grasp states in grasping tasks.

This paper presents a novel, dual hand object exploration
ethod. It is oriented towards grasp-related featuresaextr
on such like human-like approach vectors, size, rougipsha
LJich can be basis for pre-grasp calculation. The presented
ethod for two hands exploration is fast since only one
emonstration is enough to point out key features of an
object. It is also a human intuitive which is be especially
important for the end user. Accuracy tests have shown that
the method is reliable enough to find explored object after
A set of experiments has been performed to check pethe demonstration and can be used even without any vision
formance of described methods of exploration and graspystem. However, as pointed out at the beginning, integgati
related features extraction. Variety of common objects:lik of both together will make this system complete and both part
bottle, hammer, drill, phone receiver, orange or book haweill supplement each other. A question regard utilizatidn o
been chosen to demonstrate how the method behaves fpippers with size and grasp model different from human
different shapes. Selection of the results of performeaexp hand stays open and should be considered as a research
iments is depicted in Fig. 8. Proposed algorithm for featurecontinuation. Further work include grasp experiments gisin
extraction works well for different types of objects andegv an anthropomorphic artificial hand e.g. the KTHand [20]

V. EXPERIMENTS



Fig. 8.

(d)

®

Sample experiment results with corresponding régabts pictures. Grasp oriented bounding boxes (blacls)imad approach vectors (blue

vectors) presented. Square - clustered contact pointsramdjle - unclustered contact points. (a),(d) - phone(éb)s drill, (c), (f) - hammer

and integrating the presented system with a visual objepP] R. Zolner and R. Dillmann, “Using multiple probabiis hypothesis
recognition system.
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