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Abstract— This paper investigates the use of semantic
information to link ground-level occupancy maps and aerial
images. In the suggested approach a ground-level semantic
map is obtained by a mobile robot equipped with an
omnidirectional camera, differential GPS and a laser range
finder. The mobile robot uses a virtual sensor for building
detection (based on omnidirectional images) to compute the
ground-level semantic map, which indicates the probability
of the cells being occupied by the wall of a building.
These wall estimates from a ground perspective are then
matched with edges detected in an aerial image. The result
is used to direct a region- and boundary-based segmentation
algorithm for building detection in the aerial image. This
approach addresses two difficulties simultaneously: 1) the
range limitation of mobile robot sensors and 2) the difficulty
of detecting buildings in monocular aerial images. With
the suggested method building outlines can be detected
faster than the mobile robot can explore the area by
itself, giving the robot an ability to “see” around corners.
At the same time, the approach can compensate for the
absence of elevation data in segmentation of aerial images.
Our experiments demonstrate that ground-level semantic
information (wall estimates) allows to focus the segmentation
of the aerial image to find buildings and produce a ground-
level semantic map that covers a larger area than can be
built using the onboard sensors along the robot trajectory.

I. INTRODUCTION

A mobile robot has a limited view of its environment.
Mapping of the operational area is one way of enhancing
this view for visited locations. In this paper we explore the
possibility to use information extracted from aerial images
to further improve the mapping process. Semantic infor-
mation (classification of buildings versus non-buildings)
is used as the link between the ground level information
and the aerial image. The method speeds up exploration
of or planning in areas unknown to the robot.

Colour image segmentation is often used to extract in-
formation about buildings from an aerial image. However,
it is hard to perform automatic detection of buildings in
monocular aerial images without elevation information.
Buildings can not easily be separated from other man-
made structures such as driveways, tennis courts, etc. due
to the resemblance in colour and shape. We argue that wall
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estimates found by a mobile robot can compensate for
the absence of elevation data. In the approach proposed
in this paper, wall estimates detected by a mobile robot
are matched with edges extracted from an aerial image. A
virtual sensor1 for building detection is used to establish
parts of an occupancy map as belonging to a building
(wall estimate). The matching is possible since we use
geo-referenced aerial images and an absolute positioning
system on board the robot. The matched lines are then
used in region- and boundary-based segmentation of the
aerial image for detection of buildings. The purpose is to
detect building outlines faster than the mobile robot can
explore the area by itself. Using a method like this, the
robot can estimate the size of found buildings and using
the building outline it can “see” around one or several
corners without actually visiting the area. The method
does not assume a perfectly up to date aerial image, in
the sense that buildings may be missing although they are
present in the aerial image, and vice versa. It is therefore
possible to use globally available2 geo-referenced images.

A. Related Work

Overhead images in combination with ground vehicles
have been used in a number of applications. Oh et al.
[10] used map data to bias a robot motion model in a
Bayesian filter to areas with higher probability of robot
presence. Mobile robot trajectories are more likely to
follow paths in the map and using the map priors, GPS
position errors due to reflections from buildings were
compensated. This work assumed that the probable paths
were known in the map. Pictorial information captured
from a global perspective has been used for registration
of sub-maps and subsequent loop-closing in SLAM [2].
Silver et al. [14] discuss registration of heterogeneous data
(e.g. data recorded with different sampling density) from
aerial surveys and the use of these data in classification of
ground surface. Cost maps are produced that can be used

1A virtual sensor is understood as one or several physical sensors
with a dedicated signal processing unit for recognition of real world
concepts.

2E.g. Google Earth, Microsoft Virtual Earth, and satellite images from
IKONOS and its successors.



in long range vehicle navigation. Scrapper et al. [13] used
heterogeneous data from, e.g., maps and aerial surveys to
construct a world model with semantic labels. This model
was compared with vehicle sensor views providing a fast
scene interpretation.

For detection of man-made objects in aerial images,
lines and edges together with elevation data are the fea-
tures that are used most often. Building detection in single
monocular aerial images is very hard without additional
elevation data [15]. Mayer’s survey [8] describes some
existing systems for building detection and concludes that
scale, context and 3D structure were the three most im-
portant features to consider for object extraction in aerial
images. Fusion of SAR (Synthetic Aperture Radar) and
aerial images has been employed for detection of building
outlines [15]. The building location was established in
the overhead SAR image, where walls from one side of
buildings can be detected. The complete building outline
was then found using edge detection in the aerial image.
Parallel and perpendicular edges were considered and the
method belongs to edge-only segmentation approaches.
The main difference to our work is the use of a mobile
robot on the ground and the additional roof homogeneity
condition.

The combination of edge and region information for
segmentation of aerial images has been suggested in sev-
eral publications. Mueller et al. [9] presented a method to
detect agricultural fields in satellite images. First, the most
relevant edges were detected. These were then used to
guide both the smoothing of the image and the following
segmentation in the form of region growing. Freixenet
et al. [4] investigated different methods for integrating
region- and boundary-based segmentation, and also claim
that this combination is the best approach.

B. Outline and Overview

The presentation of our proposed system is divided into
three main parts. The first part, Section II, concerns the
estimation of walls by the mobile robot and edge detection
in the aerial image. The wall estimates are extracted from
a probabilistic semantic map. This map is basically an
occupancy map that is labelled using a virtual sensor for
building detection [11] mounted on the mobile robot. The
second part describes the matching of wall estimates from
the mobile robot with the edges found in the aerial image.
This procedure is described in Section III. The third part
presents the segmentation of an aerial image based on the
matched lines, see Section IV. The lines give start values
for a region growing process. In this way, an area that is
believed to be inside a potential building is defined. The
region growing process checks that no edges are included
in the region and that bottlenecks (gaps in the edge map)
are filled. Details of the mobile robot and the experiments
performed are found in Section V. Finally, the paper is
concluded in Section VI and some suggestions for future
work are given.

II. WALL ESTIMATION

A major problem for building detection in aerial images
is to decide which of the edges in the aerial image
correspond to building outlines. The idea of our approach,
to increase the probability that a correct segmentation is
performed, is to match wall estimates extracted from two
perspectives. In this section we describe the process of
extracting wall candidates, first from the mobile robot’s
perspective and then from aerial images.

A. Wall Candidates from Ground Perspective

The wall candidates from the ground perspective are
extracted from a semantic map acquired by a mobile
robot. The semantic map we use is a probabilistic oc-
cupancy grid map augmented with labels for buildings
and non-buildings [12]. The probabilistic semantic map
is produced using an algorithm that fuses different sensor
modalities. In this paper, a range sensor is used to build
an occupancy map, which is converted into a probabilistic
semantic map using the output of a virtual sensor for
building detection based on an omnidirectional camera.

The algorithm consists of two parts. First, a local
semantic map is built using the occupancy map and the
output from the virtual sensor. The virtual sensor uses the
AdaBoost algorithm [5] to train a classifier that classifies
close range monocular grey scale images taken by the
mobile robot as buildings or non-buildings. The method
combines different types of features such as edge orien-
tation, grey level clustering, and corners into a system
with high classification rate [11]. The classification by
the virtual sensor is made for a whole image. However,
the image may also contain parts that do not belong to
the detected class, e.g., an image of a building might also
include some vegetation such as a tree. Probabilities are
assigned to the occupied cells that are within a sector
representing the view of the virtual sensor. The size of
the cell formations within the sector affects the probability
values. Higher probabilities are given to larger parts of the
view, assuming that larger parts are more likely to have
caused the view’s classification [12].

In the second step the local maps are used to update
a global map using a Bayesian method. The result is a
global semantic map that distinguishes between buildings
and non-buildings. An example of a semantic map is
given in Figure 1. From the global semantic map, lines
representing probable building outlines are extracted. An
example of the extracted lines is given in Figure 2.

B. Wall Candidates in Aerial Images

Edges extracted from an aerial image are used as
potential building outlines. We limit the wall candidates
used for matching in Section III to straight lines extracted
from a colour aerial image taken from a nadir view. We
use an output fusion method for the colour edge detection.
The edge detection is performed separately on the three
RGB-components using Canny’s edge detector [1]. The
resulting edge image Ie is calculated by fusing the three



Fig. 1. An example of a semantic map where white lines denote high
probability of walls and dark lines show outlines of non-building entities.

Fig. 2. Occupancy grid map derived from Fig. 3. The wall estimates
calculated from the semantic map are drawn in black lines. The semantic
map in Fig. 1 belongs to the upper left part of this figure.

binary images obtained for the three colour components
with a logical OR-function. Finally a thinning operation
is performed to remove points that occur when edges
appear slightly shifted in the different components. For
line extraction in Ie an implementation by Peter Kovesi3

was used. The lines extracted from the edges detected in
the aerial image in Fig. 3, are shown in Fig. 4.

3http://www.csse.uwa.edu.au/∼pk/Research/MatlabFns/, University
of Western Australia, Sep 2005

Fig. 3. The trajectory of the mobile robot and the used aerial image.

Fig. 4. The lines extracted from the edge version of the aerial image.

III. WALL MATCHING

The purpose of the wall matching step is to relate a
wall estimate from the mobile robot to the edges detected
in the aerial image. In both cases lines represent the wall
estimates. We denote a wall estimate found by the mobile
robot as Lg and the N lines representing the edges found
in the aerial image by LN

a and a single line in LN
a as Li

a.
Both line types are geo-referenced in the same Cartesian
coordinate system.

The lines from both the aerial image and the seman-
tic map may be erroneous, especially concerning the
line endpoints, due to occlusion, errors in the semantic
map, different sensor coverage, etc. We therefore need a
metric for line-to-line distances that can handle partially
occluded lines. We do not consider the length of the
lines and restrict the line matching to the line directions
and the distance between two points, one point on each
line. The line matching calculations are performed in two
sequential steps: 1) decide which points on the lines are
to be matched, and 2) calculate a distance measure to find
the best matches.

A. Finding the Closest Point

In this section we define which points on the lines are
to be matched. For Lg we use the line midpoint, Pg . Due
to the possible errors described above we assume that the
point Pa on Li

a that is closest to Pg is the best candidate
to be used in our ‘line distance metric’.

To calculate Pa, let en be the orthogonal line to Li
a that

intersects Lg in Pg , see Fig. 5. We denote the intersection
between en and Li

a as φ where φ = en × Li
a (using

homogenous coordinates). The intersection φ may be
outside the line segment Li

a, see right part of Fig. 5. We
therefore need to check if φ is within the endpoints and
then set Pa = φ. If φ is not within the endpoints, then
Pa is set to the closest endpoint on La.

B. Distance Measure

The calculation of a distance measure is inspired by
[7], which describes geometric line matching in images
for stereo matching. We have reduced the complexity in
those calculations to have fewer parameters that need to
be determined and to exclude the line lengths. Matching



Fig. 5. The line Lg with its midpoint Pg = (xm, ym), the line Li
a,

and the normal to Li
a, en. To the left, Pg = φ since φ is on Li

a and
to the right, Pg is the endpoint of Li

a since φ is not on Li
a.

is performed using Lg’s midpoint Pg , the closest point
Pa on Li

a and the line directions, θi. First, a difference
vector is calculated as

rg = [Pgx − Pax , Pgy − Pay , θg − θa]T . (1)

Second, the similarity is measured as the Mahalanobis
distance

dg = rgTR−1rg (2)

where the covariance matrix R is defined as

R =

⎡
⎣

σ2
Rx 0 0
0 σ2

Ry 0
0 0 σ2

Rθ

⎤
⎦ (3)

with σRx, σRy , and σRθ being the expected standard de-
viation of the errors between the ground-based and aerial-
based wall estimates.

IV. AERIAL IMAGE SEGMENTATION

This section describes how local segmentation of the
colour aerial image is performed. Segmentation meth-
ods can be divided into two groups; discontinuity- and
similarity-based [6]. In our case we combine the two
groups by first performing an edge based segmentation
for detection of closed areas and then colour segmentation
based on a small training area to confirm the areas’
homogeneity. The following is a short description of the
sequence that is performed for each line Lg:

1) Sort LN
a based on dg from Equation 2 in increasing

order and set i = 0.
2) Set i = i + 1.
3) Define a start area Astart on the side of Li

a that is
opposite to the robot.

4) Check if Astart includes edge points (parts of edges
in Ie). If yes, return to step 2.

5) Perform edge controlled segmentation.
6) Perform homogeneity test.

The segmentation based on Lg is stopped when a region
has been found. Steps 5 and 6 are elaborated in the
following paragraphs.

A. Edge Controlled Segmentation

Based on an edge image Ie constructed from the aerial
image, we search for a closed area. Since there might be
gaps in the edges bottlenecks need to be found [9]. We
use morphological operations, with a 3 × 3 structuring

Fig. 6. Illustration of the edge-based algorithm. a) shows a small part
of Ie and Astart. In b) Ie has been dilated and in c) Asmall has been
found. d) shows Afinal as the dilation of Asmall.

element, to first dilate the interesting part of the edge
image in order to close gaps and then search for a closed
area on the side of the matched line that is opposite to
the mobile robot. When this area has been found the area
is dilated in order to compensate for the previous dilation
of the edge image. The algorithm is illustrated in Fig. 6.

B. Homogeneity Test

Classical region growing allows neighbouring pixels
with properties according to the model to be added to
the region. The model of the region can be continuously
updated as the region grows. We started our implementa-
tion in this way but it turned out that the computation time
of the method was quite high. Instead we use the initial
starting area as a training sample and evaluate the rest of
the region based on the corresponding colour model. This
means that the colour model does not gradually adapt to
the growing region, but instead requires a homogeneous
region on the complete roof part that is under investi-
gation. Regions that gradually change colour or intensity,
such as curved roofs, might then be rejected. However, so
far, we did not observe this problem in our experiments.

Gaussian Mixture Models, GMM, are popular for
colour segmentation. Like Dahlkamp et al. [3] we tested
both GMM and a model described by the mean and the
covariance matrix in RGB colour space. We selected the
mean/covariance model since it is faster and we noted
that the mean/covariance model performs approximately
equally well as the GMM in our case.

V. EXPERIMENTS

A. Data Collection

The above presented algorithms have been imple-
mented in Matlab for evaluation and the functions cur-
rently work off-line. Data were collected with a mobile
robot, a Pioneer P3-AT from ActivMedia, equipped with
differential GPS, laser range scanner, cameras and odom-
etry. The robot is equipped with two different types of
cameras; an ordinary camera mounted on a PT-head and
an omni-directional camera. The omni-directional camera
gives a 360◦ view of the surroundings in one single
shot. The camera itself is a standard consumer-grade SLR
digital camera (Canon EOS350D, 8 megapixels). On top
of the lens, a curved mirror from 0-360.com is mounted.
From each omni-image we compute 8 (every 45◦) planar
views or sub-images with a horizontal field-of-view of
56◦. These sub-images are the input to the virtual sensor.
The images were taken with ca. 1.5 m interval and were



Fig. 7. Occupancy map used to build the semantic map presented in
Fig. 1.

stored together with the corresponding robot’s pose. The
trajectory of the mobile robot is shown in Figure 3.

B. Tests

The occupancy map in Figure 7 was built using the
horizontally mounted laser range scanner. The occupied
cells in this map (marked in black) were labelled by the
virtual sensor giving the semantic map presented in Fig. 1.
The semantic map contains two classes; buildings (values
above 0.5) and non-buildings (values below 0.5). From
this semantic map we extracted the grid cells with a high
probability of being a building (above 0.9) and converted
them to the lines LM

g presented in Fig. 2. Matching of
these lines with the lines extracted from the aerial image
LN

a , see Fig. 4, was then performed. Finally, based on best
line matches the segmentation was performed according
to the description in Section IV.

The three parameters in R (Equation 3) were set to
σRx = 1 m, σRy = 1 m, and σRθ = 0.2 rad. Note that it
is only the relation between the parameters that influences
the line matching.

We have performed two different types of tests. Tests 1-
3 are the nominal cases when the collected data are used
as they are. The tests intend to show the influence of a
changed relation between σRx, σRy and σRθ by varying
σRθ . In Test 2 σRθ is decreased by a factor of 2 and in
Test 3 σRθ is increased by a factor of 2. In Tests 4 and
5 additional uncertainty (in addition to the uncertainty
already present in LM

g and LN
a ) was introduced. This

uncertainty is in the form of Gaussian noise added to
the midpoints (σx and σy) and directions σθ of LM

g . The
tests are defined in Table I.

Test σx [m] σy [m] σθ [rad] σRθ [rad] Nrun

1 0 0 0 0.2 1

2 0 0 0 0.1 1

3 0 0 0 0.4 1

4 1 1 0.1 0.2 20

5 2 2 0.2 0.2 20

TABLE I

DEFINITION OF TESTS AND THE USED PARAMETERS.

a

b

c

Fig. 8. The result of segmentation of the aerial image using the wall
estimates in Fig. 2. The ground truth building outlines are drawn in
black.

C. Quality Measure

We introduce two quality measures to be able to
compare different algorithms or sets of parameters in an
objective way. For this four sets (A-D) are defined; A
is the ground truth, a set of cells/points that has been
manually classified as building; B is the set of cells that
has been classified as building by the algorithm; C is the
set of false positives, C = B \ A, the cells that have
been classified as building B but do not belong to ground
truth A; and D are the true positives, D = B ∩ A, the
cells that have been classified as building B and belong
to ground truth A. Using these sets, two quality measures
are calculated as:

• The true positive rate, ΦTP = #D/#B.
• The false positive rate, ΦFP = #C/#B.

where #D denotes the number of cells in D, etc.

D. Result

The results of Test 1 show a high detection rate (96.5%)
and a low false positive rate (3.5%), see Table II. The
resulting segmentation is presented in Fig. 8. Four devi-
ations from an ideal result can be noted. At a and b tree
tops are obstructing the wall edges in the aerial image, at
c a white wall causes a gap between two regions, and a
false area, to the left of b, originates from an error in the
semantic map (a low hedge was marked as building).

The results of Test 1-3 are very similar which indicate
that the algorithm in this case was not specifically sensi-
tive to the changes in σRθ . In Test 4 and 5 the scenario
of Test 1 was repeated using a Monte Carlo simulation
with introduced pose uncertainty. The result is presented
in Table II. One can note that the difference between the
nominal case and Test 4 is very small. In Test 5 where
the additional uncertainties are higher the detection rate
has decreased slightly.

Test ΦTP [%] ΦF P [%]

1 96.5 3.5

2 97.0 3.0

3 96.5 3.5

4 96.8 ± 0.2 3.2 ± 0.2

5 95.9 ± 1.7 4.1 ± 1.7

TABLE II

RESULTS FOR THE TESTS. THE RESULTS OF TEST 4 AND 5 ARE

PRESENTED WITH THE CORRESPONDING STANDARD DEVIATION.



VI. CONCLUSIONS AND FUTURE WORK

This paper discusses how a virtual sensor for building
detection on a mobile robot can be used to link semantic
information to a process for building detection in aerial
images. This approach addresses two difficulties simulta-
neously: 1) buildings are hard to detect in aerial images
without elevation data and 2) the range limitation of the
sensors of mobile robots. Concerning the first difficulty
the results show a high classification rate and we can
therefore conclude that the semantic information can be
used to compensate for the absence of elevation data in
aerial image segmentation. The benefit from the extended
range of the robot’s view can clearly be noted in the
presented example. Even though the roof structure in the
example is quite complicated, the outline of large building
parts can be extracted even though the mobile robot has
only seen a minor part of surrounding walls.

There are a few issues that should be noted:

• It turns out that we can seldom segment a complete
building outline due to, e.g., different roof materials,
different roof inclinations and additions on the roof.

• It is important to check several lines from the aerial
image since the edges are not always as exact as
expected. For example roofs can have extensions in
other colours and not only roofs and ground can be
seen in the aerial image. When the nadir view is not
perfect, walls can appear in the image in addition to
the roof outline. Such a wall will produce two edges
in the aerial image, one where ground and wall meet
and one where wall and roof meet.

A. Future Work

An extension to this work is to use the building esti-
mates as training areas for colour segmentation in order to
make a global search for buildings within the aerial image.
Found regions would then have a lower probability until
the mobile robot actually confirms that the region is a
building outline.

The presented solution performs a local segmentation
of the aerial image after each new line match. An alter-
native solution would be to first segment the whole aerial
image and then confirm or reject the regions as the mobile
robot finds new wall estimates.

As can be seen in the result, the building estimates
can be parts of large buildings. It could therefore be ad-
vantageous to merge these regions. Another improvement
would be to introduce a verification step that could include
criteria such as:

• The building area should not cover ground that the
outdoor robot has traversed.

• The size of the building estimate should exceed a
minimum value (in relation to a minimum roof part).

• The found area should be checked using shadow
detection to eliminate false building estimates.

REFERENCES

[1] J. Canny. A computational approach for edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
8(2):279–98, Nov 1986.

[2] C. Chen and H. Wang. Large-scale loop-closing with pictorial
matching. In Proceedings of the 2006 IEEE International Con-
ference on Robotics and Automation, pages 1194–1199, Orlando,
Florida, May 2006.

[3] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski.
Self-supervised monocular road detection in desert terrain. In
Proceedings of Robotics: Science and Systems, Cambridge, USA,
June 2006.

[4] J. Freixenet, X. Munoz, D. Raba, J. Marti, and X. Cufi. Yet another
survey on image segmentation: Region and boundary information
integration. In European Conference on Computer Vision, volume
III, pages 408–422, Copenhagen, Denmark, May 2002.

[5] Y. Freund and R. E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of
Computer and System Sciences, 55(1):119–139, 1997.

[6] R. C. Gonzales and R. E. Woods. Digital Image Processing.
Prentice-Hall, 2002.
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