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Abstract— Building on previous propositions to generate
walking gaits online through the use of Linear Model Predictive
Control, the goal of this paper is to show that it is possible to
allow on top of that a continuous adaptation of the positions of
the foot steps, allowing the generation of stable walking gaits
even in the presence of strong perturbations, and that this
additional adaptation requires only a minimal modification of
the previous schemes, especially maintaining the same Linear
Model Predictive form. Simulation results are proposed then on
the HRP-2 humanoid robot, showing a significant improvement
over the previous schemes.

I. INTRODUCTION

The difficulty in generating a stable walking motion

mostly lies in the fact that moving one’s Center of Mass

(CoM) entirely relies on the contact forces between the

feet and the ground, with the constraint that feet can only

push on the ground [13], [14]. This restricts the motions

that a walking system can realize, strongly limiting its

capacity to follow a predefined motion in the presence of

perturbations [17]. There is a strong interest therefore in

being able to generate walking motions online, continuously

adapting them to the current dynamics of the system.

A promising approach making use of a Linear Quadratic

Regulator (LQR) has been proposed in [5]. Based on a linear

approximation of the dynamics of the system, this approach

tries to keep the contact forces in the middle of the feasible

set, stabilizing the motion of the CoM of the system by

minimizing its jerk over a finite prediction horizon. This LQR

based approach allows generating stable walking motions

online, with the possibility to continuously take into account

the current state of the system [6], [8]. But its intrinsically

linear conception not considering explicitly the constraints

on the contact forces seriously limits its capacity to deal

with strong perturbations.

In order to overcome this limitation, it has been proposed

to introduce these constraints explicitly into the regulator,

turning the LQR scheme into a more general Linear Model

Predictive Control (LMPC) scheme, what lead to significant

improvements in its capacity to deal with strong perturba-

tions [15]. But both of these propositions were designed to

work with foot step positions decided and fixed beforehand
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by a foot step planner, what unnecessarily limits the robot’s

capacity to deal with perturbations since being able to adapt

step positions online can contribute significantly to dealing

with perturbations.

Hopefully, this MPC scheme appears to be very general

in its capacity to generate stable walking motions, its only

mandatory feature being the regulation of the amplitude of

derivatives of the motion of the CoM over a prediction hori-

zon [16]. Any control variable contributing to this goal can be

instrumental in generating ever more stable walking motions.

Following this analysis, we propose here to introduce new

control variables corresponding to the positions of the foot

steps, allowing their adaptation with only a minimal addition

to this already well known LMPC scheme.

Note that the idea of adapting online the foot steps of a

walking robot has already been investigated thoroughly in the

specific case of stopping motions [7], [9], but with solutions

which are not obvious to apply to more general walking gaits.

The paper is organized as follows: Section II will present

the LMPC scheme previously introduced in [5], [15], while

Section III will present how it can be simply modified in

order to incorporate a continuous adaptation of the feet

positions. Important details about how the constraints on

the Center of Pressure (CoP) need to be addressed will be

given in Section IV before giving simulation results and

concluding.

II. THE PREDICTIVE CONTROL SCHEME

Following the ideas introduced in [5], [15], the predictive

control presented in this section will focus on the motion

of the CoM of the walking robot. Even though Nonlinear

MPC schemes are getting more and more accessible to fast

systems requiring short computation times such as walking

robots, thanks to state of the art mathematical methods [1],

Linear MPC schemes still allow shorter computation times

and therefore faster control loops, what is highly desirable.

In order to obtain a Linear MPC scheme here, we will begin

by assuming that the robot walks on a constant horizontal

plane, and that the motion of its CoM is also constrained to

a horizontal plane at a distance h above the ground, so that

its position in space can be defined using only two variables

(x, y).

We will consider trajectories of the CoM which have

piecewise constant jerks
...
x and

...
y over time intervals of

constant length T so that we can compute the corresponding

dynamics at discrete times tk (here only expressed for the

coordinate x of the CoM, but the same applies to the
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coordinate y):

x̂k+1 = A x̂k + B
...
x(tk) (1)

with

x̂k =





x(tk)
ẋ(tk)
ẍ(tk)



 (2)

and

A =





1 T T 2/2
0 1 T
0 0 1



 , B =





T 3/6
T 2/2

T



 . (3)

We will consider an approximation of the position (zx, zy)
of the CoP on the ground (also know as the Zero Moment

Point, ZMP [13]) corresponding to this motion by neglecting

the inertial effects due to rotations of the different parts of

the robot:

zx
k =

(

1 0 −h/g
)

x̂k (4)

with h the constant height of the CoM above the ground and

g the norm of the gravity force.

Using the dynamics (1) recursively, we can derive relation-

ships between the jerk of the CoM, its position and velocity

and the position of the CoP over longer time intervals, of

length NT :

Xk+1 =







xk+1

...

xk+N






= Pps x̂k + Ppu

...
Xk, (5)

Ẋk+1 =







ẋk+1

...

ẋk+N






= Pvs x̂k + Pvu

...
Xk (6)

and

Zx
k+1 =







zx
k+1

...

zx
k+N






= Pzs x̂k + Pzu

...
Xk (7)

with

...
Xk =







...
xk

...
...
xk+N−1






. (8)

The matrices Pps , Pvs , Pzs ∈ R
N×3 and Ppu , Pvu , Pzu ∈

R
N×N introduced here follow directly from the recursive

application of the dynamics (1).

The MPC scheme introduced in [5], [15] amounts then to

computing the trajectory of the CoM which minimizes the

following function over a prediction horizon of length NT :

min...
Xk,

...
Y k

1

2

(

∥

∥

...
Xk

∥

∥

2
+
∥

∥

...
Y k

∥

∥

2
)

+
α

2

(

∥

∥

∥Ẋk+1

∥

∥

∥

2

+
∥

∥

∥Ẏk+1

∥

∥

∥

2
)

+
β

2

(

∥

∥

∥Xk+1 − Xref
k+1

∥

∥

∥

2

+
∥

∥

∥Yk+1 − Y ref
k+1

∥

∥

∥

2
)

(9)

while considering constraints on the CoP that will be dis-

cussed at more length in section IV.

The parts of this objective function implying the position

and velocity of the CoM introduce an a priori on its desired

motion which is not mandatory. They drive the CoM of the

robot with a bit of damping towards a reference position

(Xref
k , Y ref

k ) which is decided to lie in the middle of the

support polygon, what can result in trajectories slightly

more robust with respect to perturbations. Solely minimizing

higher derivatives can be shown however to be sufficient

for generating stable walking motions [16]. The choice of

the constants α and β appears therefore to be largely open

and depend on the desired a priori. The computations in

this paper have been performed with α = 200 s−4 and

β = 1000 s−6 for N = 15 time intervals of length T = 0.1 s.

This minimization problem can be expressed then as a

canonical Quadratic Program (QP)

min
uk

1

2
uT

k Quk + pT
k uk (10)

with

uk =

( ...
Xk...
Y k

)

, (11)

Q =

(

Q′ 0
0 Q′

)

, (12)

Q′ = I + αPT
vuPvu + βPT

puPpu (13)

and

pk =

(

αx̂T
k PT

vsPvu + βx̂T
k PT

psPpu − β(Xref
k+1

)T Ppu

αŷT
k PT

vsPvu + βŷT
k PT

psPpu − β(Y ref
k+1

)T Ppu

)

.

(14)

Observe that the matrix Q here is constant with time, so it

can be prefactorized to minimize online computation time.

III. ADAPTING STEP POSITIONS

The MPC scheme presented in the previous section has

been exclusively used so far to generate trajectories of the

CoM with step positions decided beforehand by a step

planner [5], [6], [8], [12], [15]. This MPC scheme can be

shown however to be far more general in its capacity to

generate stable walking motions, its only mandatory feature

being the regulation of the amplitude of derivatives of the

motion of the CoM over a prediction horizon [16]. Any

control variable contributing to this goal can be instrumental

in generating ever more stable walking motions. Following

this analysis, we propose here to let the step positions be also

decided by the MPC scheme by simply adding new variables

(X f
k , Y f

k ) corresponding to the positions of the m foot steps

occurring over the prediction horizon.

Letting the step positions free, we need to introduce a new

way to steer the robot towards a desired direction, either in

the objective function (9) or through constraints. We propose

here to use the same step planner as earlier to generate

reference steps. These reference steps are handled then to

the MPC scheme which will try to execute them, keeping

however a complete freedom in the final choice of the step

positions according to the robot stability and mechanical

limits. This is easily done with an additional cost to the

function (9) driving the choice of the step positions towards
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pre-generated reference step positions (X f ref
k , Y f ref

k ), re-

sulting in the QP

min
uk

1

2

(

∥

∥

...
Xk

∥

∥

2
+
∥

∥

...
Y k

∥

∥

2
)

+
α

2

(

∥

∥

∥
Ẋk+1

∥

∥

∥

2

+
∥

∥

∥
Ẏk+1

∥

∥

∥

2
)

+
β

2

(

∥

∥

∥Xk+1 − Xref
k+1

∥

∥

∥

2

+
∥

∥

∥Yk+1 − Y ref
k+1

∥

∥

∥

2
)

+
γ

2

(

∥

∥

∥X
f
k − X f ref

k

∥

∥

∥

2

+
∥

∥

∥Y
f
k − Y f ref

k

∥

∥

∥

2
)

(15)

with

uk =









...
Xk

X f
k...

Y k

Y f
k









. (16)

Since the reference position (Xref
k , Y ref

k ) of the CoM that

appears in this QP has been decided to lie in the middle of

the support polygon, it naturally depends on the actual step

positions (X f
k , Y f

k ). If we consider that these step positions

directly indicate the center of each foot’s support polygon,

and if we consider that none of the sampling times tk falls

strictly inside a double support phase, what will be discussed

in more depth in the next section, we immediately obtain that

Xref
k+1

= Uk+1X
f
k (17)

with

Uk+1 :=





































1 0
...

...

1 0
0 1
...

...

0 1
. . .

0 0
...

...

0 0





































. (18)

The ones in this matrix Uk+1 ∈ R
N×m simply indicate

which sampling times tk fall into which step, where sampling

times correspond to rows and steps to column.

We can express then this new QP in the same canonical

form (10), but this time with a varying quadratic term

because of the varying matrix Uk+1:

Qk =

(

Q′

k 0
0 Q′

k

)

, (19)

Q′

k =

(

I + αPT
vuPvu + βPT

puPpu −βPT
puUk+1

−βPT
puUk+1 βUT

k+1Uk+1 + γI

)

(20)

and

pk =











αx̂T
k PT

vsPvu + βx̂T
k PT

psPpu

−βx̂T
k PT

psUk+1 − γX f ref
k

αŷT
k PT

vsPvu + βŷT
k PT

psPpu

−βŷT
k PT

psUk+1 − γY f ref
k











. (21)

Hopefully, the matrix Uk+1 varies cyclically with time so

prefactorizing a whole cycle of matrices Qk would still be

possible to minimize online computation time.

An alternative is to relate the reference position of the

CoM not to the actual center of the support polygon but to

the one of the reference foot steps, replacing (17) with

Xref
k+1

= Uk+1X
f ref
k . (22)

In this case, the definition (19)-(21) of the QP turns into

Q =

(

Q′ 0
0 Q′

)

, (23)

Q′ =

(

I + αPT
vuPvu + βPT

puPpu 0
0 γI

)

(24)

and

pk =












αx̂T
k PT

vsPvu + βx̂T
k PT

psPpu − β(X f ref
k )T UT

k+1
Ppu

−γX f ref
k

αŷT
k PT

vsPvu + βŷT
k PT

psPpu − β(Y f ref
k+1

)T UT
k+1Ppu

−γY f ref
k













,

(25)

bringing back a constant matrix Q. We can observe also

that steering the CoM towards the center of the reference

support polygon instead of the center of the actual support

polygon goes along the initial idea of using the reference

foot steps for driving the motion of the robot. Anyway,

these terms are of secondary importance for the stability of

the generated gait as discussed in section II, so the choice

between these two alternatives should be considered also of

secondary importance. The results in this paper have been

obtained with the second alternative.

IV. CONSTRAINTS ON THE CENTER OF

PRESSURE

The definition of the MPC scheme in section II wouldn’t

be complete without specifying the constraints restricting the

position of the CoP on the ground. Since the feet of the robot

can only push on the ground, this CoP can only lie within

the support polygon, the convex hull of the contact points

between the feet and the ground [13]. Any trajectory not

satisfying this constraint wouldn’t be realizable.

During single support, considering a foot with a polygonal

shape on the ground at a position (xf , yf) with an orienta-

tion θ, this constraint can be expressed as a set of linear

constraints

(

dx(θ) dy(θ)
)

(

zx − xf

zy − yf

)

≤ b(θ) (26)

on the position of the CoP. We can observe that these

inequalities are linear with respect to the position of the foot

on the ground but nonlinear with respect to its orientation.

In the case of double support, these inequalities won’t be

linear anymore with respect to the feet position but quadratic

because of the cross-products hidden in the computation of
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the vectors dx and dy . Such nonlinearities are best avoided

in order to keep the form of a QP with linear constraints

which is very advantageous from a computational point of

view. For this reason, we will consider here the orientations

of the feet decided in advance and we will discuss now in

more depth the question of double support.

It appears that satisfying the constraint on the position

of the CoP only at discrete instants is largely enough for

generating realizable motions, under the mandatory condition

that it is satisfied at all transition times during single and

double support phases (and introducing a safety margin as

presented later in section VI). An important observation is

that at these transition times, the constraints of both single

and double support apply, but those of single support are the

most restrictive and are therefore sufficient. We choose here

to satisfy the constraint on the position of the CoP at the

sampling times tk, with a period T in between chosen to

be strictly equal to the length of the double support phases

(0.1 s here, with single support periods of 0.7 s) so that no

sampling time falls strictly inside them. This way, we end up

having to consider only the single support constraint (26).

Expressing now this constraint at the instants tk over the

whole prediction horizon leads to

Dk+1

(

Zx
k+1 − Uk+1X

f
k

Zy
k+1

− Uk+1Y
f
k

)

≤ bk+1, (27)

or with respect to the vector uk defined in (16),

Dk+1

(

Pzu −Uk+1 0 0
0 0 Pzu −Uk+1

)

uk ≤

bk+1 −

(

Pzs x̂k

Pzs ŷk

)

, (28)

with Dk+1 of the following simple double diagonal form,

Dk+1 =













dx(θ1) 0 . . . 0 dy(θ1) . . .

0 dx(θ1)
. . .

... 0
. . .

...
. . .

. . . 0
...

. . .

0 . . . 0 dx(θm) 0 . . .













.

(29)

Due to the special structure of these matrices, no matrix mul-

tiplications are required for assembling the final inequality

constraint (28), what can be done therefore very quickly. On

top of that, their evolution in time is also highly structured,

so this assembling need not even be realized at each time.

V. CONSTRAINTS ON THE FOOT POSITION

Allowing modifications of the foot positions by this MPC

scheme, we need to be sure that these modifications won’t

lead to unrealizable motions because of the geometric and

kinematic limitations of the robot: maximum leg length,

joint limits, self-collision avoidance, maximum joint speed

and other similar limitations need to be taken care of.

The only thing we need to do for this is to derive simple

approximations of all these limitations that can be expressed

in the form of linear constraints on the vector uk defined

in (16).

−0.3 0.2 0.7 1.2 1.7

−0.4

−0.2

0.0

0.2

0.4

x [m]

y
 [

m
]

Fig. 1. Motion of the CoM (in red) and CoP (in black) and foot steps
generated by our MPC scheme when the system is not submitted to any
perturbation. The dotted plots correspond to the CoP computed with the
approximate model together with the safety margins 3 cm inside the foot
prints used in the QP computations. The continuous plots correspond to the
real CoP of the robot together with the real foot prints. Note an evolution of
the CoP from heels to toes very similar to what can be observed in humans.

We can derive for example simple linear bounds on the

positions of the feet one with respect to the other with min-

imum and maximum values preventing collision on one side

and over-stretching of the legs on the other side. Concerning

maximum joint speed, we have found that a very simple

bound on the position of the next foot step depending on the

current position of the foot in the air and a simple Cartesian

maximum speed gives good results:

C





(

Xf
k

)

1

− xf (t)
(

Y f
k

)

1

− yf (t)



 ≤ (ttouchdown − t)vmax (30)

with
(

Xf
k , Y f

k

)

1

the position of the next foot step,
(

xf (t), yf (t)
)

the current position of the foot in the air,

vmax a vector of approximate maximum Cartesian speed

in the directions indicated by the matrix C and ttouchdown

the time when the foot in the air is planned to touch the

ground. The computations in this paper have been obtained

with maximum speeds of 0.43 m.s−1 in the forward direction

and 0.14 m.s−1 in the lateral direction.

VI. SIMULATION RESULTS

Fig. 1 shows a walking gait generated by the MPC scheme

presented in the previous sections when the system is not

submitted to any perturbation. The foot steps appear to be

only very slightly modified with respect to their reference

positions, around 2 mm towards the inside. We can observe

an evolution of the CoP from heels to toes very similar to

what can be observed in humans. It doesn’t reach the toes

though since we are not considering toe joint rotation phases

here, but this is solely due to our choice of parameters and

this gait generation scheme should be able to deal seamlessly

with such phases of motion. This motion, as well as the
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−0.3 0.2 0.7 1.2 1.7

−0.4

−0.2

0.0

0.2

0.4

x [m]

y
 [

m
]

Fig. 2. Same plot as in Fig. 1 but with a system submitted to a perturbation
in the lateral direction in the middle of the second single support phase. The
motion of the feet in the air is also shown in grey. We can observe a very
large recovery step aside and a convergence back to the reference motion
in 4 steps, with a CoP continuously staying within the boundaries of the
support polygon, as required. We can observe that the approximate CoP
continuously stays on the edge of the safety margin for at least 3 steps after
the perturbation occurs, an indication that the amplitude of this perturbation
is not far from the limits of what this scheme can compensate.

−0.3 0.2 0.7 1.2 1.7

−0.4

−0.2

0.0

0.2

0.4

x [m]

y
 [

m
]

Fig. 3. Same plot as before but with a system submitted to a perturbation in
the lateral and backward direction in the middle of the second single support
phase. Once again, the CoP continuously stays within the boundaries of the
support polygon as required.

following ones, has been generated and verified in simulation

with a complete multi-body dynamical model of the HRP-2

humanoid robot.

Fig. 2 shows the outcome of a perturbation happening in

the lateral direction in the middle of the second single sup-

port phase, and Fig. 3 the outcome of a similar perturbation

but in a diagonal direction, lateral and backwards. We can

observe in both cases a recovery motion beginning with one

big recovery step followed by a convergence back to the

reference motion in 3 or 4 steps. We can observe that the

CoP continuously lies within the boundaries of the support

polygon, as required. In fact the constraints on the CoP are

exactly satisfied only at the instants tk, and they appear to be

slightly violated sometimes between these instants, but we

have used a safety margin of 3 cm inside the true boundaries

of the support polygon so as to be completely safe with

respect to this discretization effect.

The trajectories of the feet in the air can also be observed

on these figures, showing how the continuous adaptation

of the foot steps gives rise to continuously smooth global

motions, with a final modification of the first recovery step

as big as 18 cm.

These perturbations were computed as the results of a

ball falling from 0.5 m high around a pivot and hitting

the robot horizontally at the height of its CoM through

a plastic impact – with complete transfer of the kinetic

energy. A decoupling Task Function control law [18] allows

compensating independently the perturbations induced on

the CoM and on the different limbs of the robot. These

perturbations correspond to a mass of the ball equivalent

to up to 13 % of the mass of the robot. As a comparison,

such impacts with weight ratios bigger than 7 % can hardly

be compensated by the MPC schemes without adaptive

foot positioning under the same conditions [6], [15]. The

improvement is therefore significant. Note however that the

adaptive foot positioning scheme proposed here applies so far

only to continuous walking motions: it allows compensating

perturbations while walking, not in other cases such as when

standing still.

Assembling and solving the QPs in all these cases took

less than 1 ms in average with state of the art solvers such

as QL [11] or qpOASES [4], [3], [10], without any serious

optimization of the code and notwithstanding observations

such those presented in [2] which can help greatly improve

computation time.

VII. CONCLUSION

We have presented an extension to an LMPC scheme

already proposed previously for generating walking gaits

online. This extension amounts to adding new variables

to the problem representing the future foot step positions.

Doing so, the general form of the numerical scheme is kept

identical while leading to significantly improved capacities

to compensate strong perturbations. Indeed, simulations on

the HRP-2 humanoid robot show that this modified scheme

allows compensating perturbations twice stronger than earlier

versions. Demonstrating these results on the real platform

should be the next step now.
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