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Abstract— The article presents an improved formulation of
an existing model predictive control scheme used to generate
online “stable” walking motions for a humanoid robot. We
introduce: (i) a change of variable that simplifies the optimiza-
tion problem to be solved; (ii) a simply bounded formulation
in the case when the positions of the feet are predetermined;
(iii) a formulation allowing foot repositioning (when the system
is perturbed) based on ℓ1- and ℓ∞-norm minimization; (iv)
a formulation that accounts for (approximate) double support
constraints when foot repositioning occurs.

I. INTRODUCTION

The realization of “stable” walking motions for a hu-

manoid robot is heavily limited by the unilateral constraints

[1] between the feet and the ground. When walking on

a flat ground, these constraints can be represented by the

condition that the Zero Moment Point (ZMP) [2] can only lie

within the support polygon. A variety of methods, accounting

explicitly for this condition, based on knowledge of the full

dynamic characteristics of the system are introduced [3],

[4]. Such methods strongly rely on the model accuracy, and

usually assume that the precomputed trajectories of the state

variables can be executed in a straightforward way in an

error-free environment. Another possible approach is for the

walking motions to be generated online, based on the use of

an approximate dynamical model, where the approximation

is compensated by the application of a preview controller

with (possibly) fast sampling time. The second alternative

is rather attractive because perturbations due to uncertainty

of the environment (or feedback errors) can be compensated

for, leading to a more robust (to uncertainty) control/planing

scheme.

A promising approach based on a linear approximation

of the dynamics of a humanoid robot in combination with a

Linear Quadratic Regulator (LQR) has been presented in [5].

An important modification (among many others presented

since the publication of [5], e.g., [7], [8]) is to account

explicitly for the constraints on the ZMP [6], essentially

turning the LQR scheme into a more general Linear Model

Predictive Control (LMPC) scheme, which led to significant

improvement when dealing with perturbations [13]. Addi-

tional flexibility, allowing to alter the placement of the feet

if the predefined profile could not be followed due to strong

perturbations was introduced in [12], and extended in [10],

[14] by replacing the requirement of specifying reference feet

placement with a reference average speed for the Center of

Mass (CoM).

One disadvantage of the LMPC scheme in [10] compared

to the LQR scheme in [5], is the necessity to solve a

Quadratic Program (QP) with general inequality constraints

at each sampling time, hence its successful application to

systems with short sampling times is very dependent on the

efficiency of forming and solving the underlying QP. There

has been a great deal of related research, in the context of

humanoid walking [13], [11], [9], and in general [15], [16].

Even though the LMPC scheme discussed above has been

successfully tested (to the authors’ knowledge) on the HRP-

2 and NAO platforms [17], there are still issues that need

to be addressed. One of them is that when repositioning of

the feet is allowed, the formulation (as presented in [12],

[10]) assumes that no sampling time falls strictly in a double

support phase, hence double support is not considered at

all. This could impose difficulties depending on the walking

pattern to be executed. A second limitation is that the

variation of the feet (from a given reference position) is

penalized only using a quadratic ℓ2-norm, which leads to

changing feet positions even if it is not necessary. As will

be discussed in the sequel, for any finite value of this penalty,

feet repositioning occurs.

The focus of this article is twofold:

• to introduce a new efficient formulation for the LMPC

scheme (discussed above), in the case when the ref-

erence profile of the feet cannot change. Through a

change of variable, and a sequence of Givens rotations,

we are able to arrive at a simply bounded QP, which can

be solved much faster compared to a QP with general

inequality constraints;

• a modification of the formulation in [12] by computing

the change of the positions of the feet (from the pre-

defined reference positions) based on the minimization

of quadratic ℓ2-norm in combination with ℓ1- or ℓ∞-

norm, which can lead to improved results. Furthermore,

an approach for handling double support constraints in

case of both fixed and variable feet is introduced.

The article is organized as follows: Section II, contains

background and notation related to the LMPC scheme pre-

sented in [12], [10]. In Section III, single support and double

support constraints for the ZMP (in the case when foot

variation is allowed) are presented. Section IV introduces

a simply bounded formulation. In Section V we present two

formulations (based on the minimization of ℓ1- and ℓ∞-

norm) for computing optimal foot repositioning. Finally, in

Section VI simulation results are presented.

II. BACKGROUND

The ZMP preview control scheme proposed in [5] approx-

imates the dynamics of a humanoid robot with that of a 3D



linear inverted pendulum. Such approximation, and with the

assumption that the CoM of the system is constrained to

move on a horizontal plane with constant height, result in a

decoupled set of equations governing the motion of the ZMP.

zx = cx −
cz

g
c̈x, zy = cy −

cz

g
c̈y, (1)

where z = [zx, zy]T are the coordinates of the ZMP on the

flat floor, cx, cy and cz are the coordinates of the CoM (note

that the altitude cz is assumed constant), g is the norm of

the acceleration due to gravity (e.g. g ≈ 9.8 m/s2), and a

dot over a variable denotes a time derivative.

We will consider trajectories of the CoM with piecewise

constant jerks
...
c x,

...
c y over time intervals of constant length

T . Let us denote ĉk =
[
cxk ċxk c̈xk cyk ċyk c̈yk

]T
, and

ck =
[
cxk cyk

]T
. Starting from ĉk and performing trivial

integration leads to

ĉk+1 = Aĉk + B
...
ck, (2)

while equations (1) leads to

zk = Cz ĉk, (3)

where

A =











1 T T 2/2 0 0 0
0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 1 T T 2/2
0 0 0 0 1 T
0 0 0 0 0 1











,

B =











T 3/6 0
T 2/2 0
T 0
0 T 3/6
0 T 2/2
0 T











,

Cz =

[

1 0 − cz

g
0 0 0

0 0 0 1 0 − cz

g

]

.

ĉk ∈ R
6 represents the state of the system,

...
ck ∈ R

2 is

the control input, zk ∈ R
2 is a vector of measured (or

estimated) outputs which are to be controlled (to satisfy given

constraints and when possible to follow certain reference

profile). In order to express the behavior of (2) and (3) for

N discrete intervals in the future as a function of ĉk and

n = 2N control actions, we perform the following recursion

zk+τ = CzA
τ ĉk + Cz

τ−1∑

ρ=0

A
(τ−ρ−1)

B
...
ck+ρ , (τ = 1, ..., N).

In a matrix form we have

Z =






zk+1

...

zk+N




 = P zsĉk + P zu






...
ck

...
...
ck+N−1






= P zsĉk + P zuU . (4)

If in the above recursion instead of Cz one uses

Cp =

[
1 0 0 0 0 0
0 0 0 1 0 0

]

, or

Cv =

[
0 1 0 0 0 0
0 0 0 0 1 0

]

one obtains

C =






ck+1

...

ck+N




 = P psĉk + P puU , (5)

Ċ =






ċk+1

...

ċk+N




 = P vsĉk + P vuU , (6)

respectively, where C and Ċ represent the evolution of the

position and velocity of the CoM in the preview window.

The matrices P zs, P ps, P vs ∈ R
n×6 and P zu, P pu, P vu ∈

R
n×n are invertible see [10]1.

The application of a LMPC scheme is based on the

minimization of a strictly convex quadratic objective function

over a prediction horizon, subject to input and state con-

straints. We consider them next.

III. CONSTRAINTS

In contrast to previous approaches, instead of using the

jerk (U ), we consider directly the ZMP (Z) as a decision

variable. This results in simplified constraints (presented

in this section), and is used to obtain a simply-bounded

formulation presented in Section IV.

A. Single support constraints on the ZMP

Since the feet of the robot can only push on the ground,

the ZMP can only lie within the support polygon (the convex

hull of the contact points between the feet and the ground).

Let there be m single support steps in the preview window.

The condition that z is within the polygon defined by the

ith step, can be expressed as a set of linear inequalities of

the form

D̄zR
T
i (z − F i) + d̄z ≥ 0, (7)

where D̄z and d̄z are constant, F i ∈ R
2 is the position (of

a point of interest, see Fig. 1) of foot i, and Ri ∈ R
2×2

is a rotation matrix defining the orientations of the normal

vectors in D̄z (assumed to be normalized). Note that the ith

single support step can appear in multiple sampling times in

the preview window.

Let us represent the position of the ith footstep as

F i = F ref
i + S∆V i, (8)

where F ref
i is a reference position, ∆F i = S∆V i is a

variation from the reference position, and the matrix S ∈

1Note that in [10] the formulation is given by separating the x and y
components of z and c, which might be better for the actual implementation.
Our notation is adopted for the sake of simplified presentation.
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Fig. 1. Constraints on the ZMP and position of the feet. F i ∈ R2 and
Ri ∈ R2×2 define the position (of a point of interest) and orientation of
foot i relative to the world frame. OL is an offset defining the position
of (a point of interest of) the constraint for foot i + 1 relative to foot i
(expressed in the local frame fixed in foot i).

R
2×s contains directions in which ∆V i ∈ R

s is resolved

(s ≥ 2 is assumed). A “standard choice” for S would be the

identity matrix I , in which case ∆F i = ∆V i (the reasoning

for the case with s > 2 will become evident in Section V).

Substituting (8) in (7) leads to

D̄zR
T
i

[
I −S

]
[

z

∆V i

]

+ d̄z − D̄zR
T
i F

ref
i ≥ 0. (9)

In what follows, footstep i will be referred to as fixed if

∆V i = 0, and variable, if ∆V i could be different from zero

(i.e., there is a possibility for it to be repositioned). Let V
be the set of variable footsteps, then determining an optimal

(according to a given objective function) repositioning of

the variable footsteps, will be done by adding ∆V i, (i ∈ V)
to the decision variables of the optimization problem (see

Section V).

B. Double support constraints

Let us consider Fig. 2, where two constraints correspond-

ing to the ith and (i + 1)th single support step, and their

convex hull are depicted. The number of facets of the double

support constraint depends on the orientation and position of

the two feet and ranges from four to seven. It is possible

to approximate these constraints by using a number of

rectangular constraints (depicted using blue dashed line in

Fig. 2). Let a point p on the line segment between F i and

F i+1 be defined as

p(θ,F i,F i+1) = θF i+1 + (1− θ)F i, (0 ≤ θ ≤ 1). (10)

We define the following constraint

D̄zR
T
i (z − p (θ,F i,F i+1)) + d̄

s

z ≥ 0, (11)

where d̄
s

z imposes a slightly tighter “safety margin” com-

pared to d̄z (see Fig. 2). Note that the above constraint is
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Fig. 2. Approximation of the constraints on the ZMP when in double
support. The polygon depicted in gray represents the double support
constraints without safety margin. The approximating constraints (in blue
dashed line) have tighter safety margin compared to the normal single
support constraints.

defined to have the same orientation as foot i (alternatively

the orientation of foot i+ 1 could be used).

1) Case F-F: Both F i and F i+1 are fixed.

F-F double support implies that the preview window

starts with a double support (and both feet in support are

considered to be fixed). In this case, one could directly

compute the real double support constraint, however, here

we present two alternatives. From (11) we obtain

D̄zR
T
i

[
I (F i − F i+1)

]
[
z

θ

]

+ d̄
s

z − D̄zR
T
i F i ≥ 0.

From Fig. 2 we see that if θ = 1 is used, the approximation

would leave the original double support constraint, hence

we use the following heuristic constraint 0 ≤ θ ≤ 0.85,

which seems to be “reasonable” when the relative orientation

between two successive footsteps is not more than 30 deg.

Note that the above equation implies that θ is considered as

a variable of the QP.

Avoiding the heuristic constraint for θ and the tighter

safety margin (from above), can be done by introducing,

instead of one, two variables θ1 and θ2. Where, the former

“moves” the ith polygon, and the latter “moves” the (i+1)th

polygon along the line segment connecting F i and F i+1.

With this setting, the constraint for the ZMP can be defined

as the intersection of the two polygons, and then both θ1 and

θ2 could be swept safely between 0 and 1.

2) Case V-V: Both F i and F i+1 are variable.

In this case, depending on the desired profile for the

ZMP during a double support, a set of values for θ can be

predefined to obtain

D̄zR
T
i

[
I −(1− θ)S −θS

]





z

∆V i

∆V i+1



+ d̄
s

z ≥ qz, (12)



where qz = D̄zR
T
i

(

θF ref
i+1 − θF ref

i + F ref
i

)

. For exam-

ple, in Fig. 2 there are three sampling times strictly falling

in double support, and three values for θ are defined.

The case when the ith footstep is fixed and the (i+ 1)th

step is variable (denoted by F-V), is handled by simply

assuming that ∆V i = 0 in (12).

C. Constraints on the foot placement

In order to assure that the positions of the footsteps

are feasible with respect to joint limits, self-collision, and

other similar geometric limitations, we use “safety zone”

constraints for the positions of the feet. This approach is

adopted from [14] (where a polygonal approximation of

the “safety zone” constraints for HRP-2 are presented). In

general they can be expressed as (see Fig. 1)

D̄fR
T
i

[
−S S

]
[

∆V i

∆V i+1

]

+ d̄f − qf ≥ 0, (13)

where qf = D̄fOL+D̄fR
T
i (F

ref
i −F ref

i+1). D̄f , d̄f and OL

are constant and define the orientation, size and positioning

of the polygonal approximation of the “safety-zone”.

In certain cases, imposing additional constraints might

be desirable, e.g., a heuristic constraint that accounts for

maximum joint speed is presented in [12].

IV. SIMPLY BOUNDED FORMULATION

In this section we make two assumptions: (i) all footsteps

are fixed (i.e., ∆V i = 0, ∀i); (ii) all constraints for the

ZMP in the preview window are rectangular (double support

constraints are approximated using equation (12), with fixed

F i, F i+1). With these two assumptions, it is possible to

derive a simply bounded formulation.

We consider the minimization of the following objective

function (in Section V it will be modified when variable foot

position is discussed).

minimize
Z∈Rn

γ

2
‖U‖2 +

α

2
‖Ċ‖2 +

β

2
‖Z −Zref‖2 =

1

2
ZTHZ +ZTg, (14)

where α, β, γ > 0 are gains, Zref is a reference profile for

Z, and

H = γP−T
zu P−1

zu + αP−T
zu P T

vuP vuP
−1
zu + βI,

g = P cĉk − βZref,

P c = αP−T
zu P T

vu

(
P vs − P vuP

−1
zuP zs

)
− γP−T

zu P−1
zuP zs.

Let Dz ∈ R
4N×n be a constant block diagonal matrix, and

let each of its 4×2 blocks be equal to D̄z (as given in Fig. 1).

Let R ∈ R
n×n be a block diagonal matrix (containing on its

diagonal the rotation matrices Ri) and d ∈ R
4N be a vector,

both varying from one preview window to the next. The kth

(2× 2) block of R, and 4× 1 part of d are formed by using

either equation (9) or (12), depending on whether the kth

sampling time of the preview window is a single or double

support, respectively. Then, the constraints for the position

of the ZMP in the whole preview window can be written as

DzR
T

︸ ︷︷ ︸

D

Z + d ≥ 0. (15)

Note that the matrix D contains at most two nonzero entries

in each row and can be formed very efficiently. If instead of

Z, one uses U as an optimization variable (as done in [12],

[10] for example), the leading matrix of the constraints is

given by DP zu (which is dense).

By considering (14), (15) and a change of variable Q =
RTZ we obtain

minimize
Q∈Rn

1

2
QTRTHRQ+QTRTg (16)

subject to DzQ+ d ≥ 0.

Since Dz is constant and contains on its main diagonal D̄z ,

the above constraint can be rewritten simply as d ≤ Q ≤ d,

where d and d stand for lower and upper bound, respectively.

The following example shows the relation between d,d and

d. Let us consider only the first four constraints from above






−1 0
0 −1
1 0
0 1







[
Qx1

Qy1

]

+







d1
d2
d3
d4






≥







0
0
0
0







which is equivalent to

−d3 ≤ Qx1
≤ d1

−d4 ≤ Qy1
≤ d2.

Note that only parts of R may vary from one preview

window to the next (and due to the structure of both H and

R), the update of the Hessian matrix RTHR (or directly its

inverse, or its Cholesky factors) can be done very efficiently

(with much less effort than one typical iteration of an active

set method). By using a dedicated algorithm (e.g. see [18]),

QP (16) can be solved much more efficiently than a QP with

general constraints.

V. OPTIMAL FOOT REPOSITIONING

A general limitation of the scheme presented in Sec-

tion IV, is that the feet are assumed to be fixed. In the

presence of strong perturbations, the ability to adapt their

positions online adds additional flexibility.

Let us define a matrix T ∈ R
n×(smv) as

T =






T 1,1 . . . T 1,mv

...
. . .

...

TN,1 . . . TN,mv




 , (17)

where T k,i ∈ R
2×s shows the way the ith footstep appear

in the kth sampling period (denoted by tk), and mv = |V|
is the number of variable feet in a preview window.

T k,i =







0 if step i does not appear during tk
S if step i is a single support during tk
(1− θ)S if step i is a first step in a V-V DS

θS or second step in a F-V or V-V DS



Above we use DS as a shorthand for double support. We will

assume that a F-F double support constraint is formed using

a four-edge approximation (this assumption is made only to

simplify the notation, however, in an actual implementation

forming the real double support constraint is readily pos-

sible). Next, we outline the formulation given in [12], and

then enhance it (for simplicity of presentation, we omit the

constraints in (13)).

A. Quadratic ℓ2-norm penalty

Let ∆V ∈ R
smv be a vector containing ∆V i, (i ∈ V).

Using S = I (hence ∆F = ∆V ), the following QP can be

used to perform foot adaptation online.

minimize
Z∈Rn,∆F∈R2mv

1

2

[
Z

∆F

]T [
H 0

0 µI

] [
Z

∆F

]

+

[
Z

∆F

]T [
g

0

]

(18)

subject to D
[
I −T

]
[

Z

∆F

]

+ d ≥ 0,

where µ > 0 is a gain. The difference between the objective

functions in (14) and (18) is the term 1
2µ∆F T∆F , which

is used to penalize the footstep variation. If the reference

positions of the feet are considered as constraints, then in

the limit µ → ∞ the hard-constrained problem is recovered

(i.e. the footsteps are fixed). By using a finite gain µ, one

can soften the constraints for the foot positions.

The drawback of the above formulation comes from the

fact that for all finite values of µ the constraints will be

violated to some extent, i.e., foot variation will occur even

if it is not necessary [20]. This is observed in [12], where

even without a disturbance, the feet tend to move “towards

the inside”. One could argue that for very large values of µ,

the foot variation would be negligible, however this might in

turn affect in an undesirable way the response of the system

when there is a disturbance.

B. Alternative ways for penalization of the variation

An important question is due: how do we measure the

magnitude of the foot variation? The magnitude of a vector

v is related to the choice of different ℓp-norm. In the field

of predictive control it is common to use either ℓ1-norm

(defined as the sum of absolute values of the elements of v),

quadratic ℓ2-norm (defined as vTv), and ℓ∞-norm (defined

as the element of v with largest absolute value).

Penalizing different norms in the objective function, can

result in solutions with completely different properties. For

example (as discussed in [21], pp. 304), minimizing the ℓ1-

norm tends to produce solutions with large number of com-

ponents equal to zero (sometimes referred to as sparse so-

lutions). This property is heavily used in many applications,

for example: compressed sensing; approximate solutions of

cardinality problems; robust (to outliers, or noise) estimation

in statistics; sparse design; sparse signal reconstruction, etc..

Some of the common formulations used in practice are that

of: robust estimator, basis pursuit, Chebyshev approximation

problem (or minimax approximation problem), the latter one

being based on the minimization of ℓ∞-norm (e.g., see [22]).

In the context of nonlinear programming (and MPC), the

minimization of ℓ1- and ℓ∞-norm are commonly used in

order to produce exact penalization (see [23], Section 12.3),

or impose soft constraints [20], pp. 97. Next, we discuss two

alternatives for penalizing the foot variation.

C. Quadratic ℓ2- plus ℓ1-norm penalty

Here, we present a formulation based on the following

penalty function

f(v, µ, ξ) =
µ

2
vTv + ξvT

1 (19)

v ≥ 0,

where 1 is a vector of ones (with appropriate dimensions),

and ξ ≥ 0 is a gain. Equation (19) can be viewed as a

weighted sum of the quadratic ℓ2- and ℓ1-norm of v. In

formulation (18) the penalty function used is f(∆F , µ, 0).
Note that simply adding ξ∆F T

1 (with ξ 6= 0) to the

objective function of (18) is not possible because in general

the entries of ∆F could be negative. In order to be able to

use ξ 6= 0 we reformulate (18) so that the decision variables

corresponding to the foot placement are nonnegative. One

way of achieving this is by using four directions in S along

the x, y, −x and −y axes (i.e., S ∈ R
2×4) leading to

minimize
Z∈Rn,∆V ∈Rsmv

1

2

[
Z

∆V

]T [
H 0

0 µI

] [
Z

∆V

]

+

[
Z

∆V

]T [
g

ξ1

]

(20)

subject to D
[
I −T

]
[

Z

∆V

]

+ d ≥ 0

∆V ≥ 0.

Using µ = 0 and ξ = 1 would result in the minimization

of ‖∆V ‖1. The above formulation is very general, as by

changing the number of directions in the matrix S, one can

“shape-up” alternative norms to be minimized, hence adding

additional flexibility to the design and tuning of the LMPC

scheme.

With this formulation s ≥ 3 is required, as at least three

vectors are needed in order to positively span the plane

(follows from the Caratheodory’ theorem).

D. Quadratic ℓ2- plus ℓ∞-norm penalty

Here, we present an equally general formulation as (20),

based on the minimization of ℓ∞-norm that uses only one

additional variable. This comes at the expense of increasing

the number of constraints. Below we use the observation

that |x| is the smallest number w that satisfies x ≤ w and

x ≥ −w, or in a more compact notation −w ≤ x ≤ w. Let

S = I , then if µ = 0, ν = 0 and ξ = 1 are chosen, the



following formulation minimizes ‖∆F ‖∞.

minimize
Z∈Rn,∆V ∈Rsmv ,w

1

2





Z

∆V

w





T



H 0 0

0 µI 0

0 0 ν









Z

∆V

w





+





Z

∆V

w





T



g

0

ξ



 (21)

subject to D
[
I −T 0

]





Z

∆V

w



+ d ≥ 0

− w1 ≤ ∆V ≤ w1.

The above constraints could be expressed as




D −DT 0

0 I 1

0 −I 1









Z

∆V

w



+





d

0

0



 ≥ 0,

which explicitly shows the additional constraints. Note that

formulation (21) requires only s ≥ 2. Again (as in (20)), by

increasing the number of directions in the matrix S, one can

“shape-up” alternative norms to be minimized.

E. Some remarks

Choosing “appropriate” values for the two gains µ and ξ
in the formulations in Sections V-D and V-C, depends on

the particular application and type of robot. An interesting

theoretical result presented in [23], Section 12.3 is that,

given a set of disturbances for which we do not want foot

repositioning to occur, a lower bound on how “large” ξ
should be (in order to achieve that), can be computed as

the maximum dual norm of the Lagrange multipliers in the

solution of the hard-constrained problem (i.e., when the foot

positions are fixed). The computation of this bound, however,

is a very complex and time-consuming task (one possible

solution in discussed in [19]), furthermore it depends on

the magnitude (and direction) of the disturbances acting on

the system. Hence, it is very common in practice to simply

heuristically assign a constant positive value for ξ.

A remark, regarding double support constraints is due. One

could argue that fixing values for θ, could be restrictive in

the case of perturbations, however, this is performed only

when a double support includes a variable step (i.e. in the

future). When the system is actually in double support one

could either form the real double support constraint, or use

the alternatives presented in Section III-B.1. Hence, by being

slightly restrictive regarding the behavior of the system in the

future, we can apply the LMPC scheme to many different

walking patterns, and relax the assumption that the sampling

time has to be equal to the double support time (see [12],

[14], [10]).

VI. SIMULATION RESULTS

Here, we present the results from a numerical simulation

when using formulations (18), (20), and (21) to perform

online walking motion generation for a humanoid robot. The

envisioned target platform is the humanoid robot NAO. We
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Fig. 3. Motion generation when using formulation (18) with µ = 2000000.
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Fig. 4. Motion generation when using formulation (20) with µ = 1000,
ξ = 4000, S contains four vectors, namely x, y, −x, −y.
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Fig. 5. Motion generation when using formulation (21) with µ = 1000,
ξ = 4000, ν = 0.001, S = I .

use the following parameters: g = 9.8, cz = 0.26, N = 15,

T = 0.1, α = 150, β = 2000, γ = 1. The number of

iterations in single support and double support is 4 and 2,

respectively. The “point of interest” for the single support

constraints is chosen to be the projection of the ankle of

the robot of the flat floor. For presentation purposes (due to

the fact that the maximum distance between two successive

footsteps of NAO is smaller than the size of the feet), we

use d̄z =
[
0.04 0.015 0.02 0.015

]T
.
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Fig. 6. Constraints appearing in a typical preview window.

Fig. 3, 4, 5 present the results when using formulations

(18), (20), (21), respectively (double support constraints are

not plotted for clarity). During the first (right) single support

the system is disturbed (by a force acting in the direction of

the positive y axis). Blue squares and blue line represent the

profile of the ZMP and CoM, respectively. The constraints

corresponding to the reference footsteps are depicted in

black, while the constraints corresponding to the actual

footsteps (generated online) are depicted in red rectangles

(their positions are depicted with red squares). From Fig. 3

it is evident that the feet tend to move “towards the inside”

even long after the disturbance. Even in the absence of a

disturbance, similar result is obtained. In Fig. 4, 5 it can

be observed that after the initial footstep repositioning (due

to the disturbance), the system converges to the reference

footsteps and follows them exactly.

Fig. 6 depicts the constraints appearing in a typical pre-

view window. The blue rectangle is a fixed single support,

while red rectangles correspond to variable feet. According

to the cases in Section III, the rectangles depicted with a

red dashed line correspond to a V-V double support, the

rectangles depicted with a blue dashed line correspond to a

F-V double support, while the polygon depicted in a dashed

black like corresponds to a F-F double support, which is

given as the convex hull of the feet currently in support (the

two alternatives in III-B.1 could have been used instead).

The rectangles depicted with a dashed green line correspond

to foot constraints (13).

VII. CONCLUSIONS

The article presented a formulation for generating online

“stable” walking motions for a humanoid robot. There are

four contributions: (i) we work directly with the ZMP as

a decision variable (instead of using the jerk, as done so

far), which leads to very simple form of the constraint,

hence resulting in a more efficient formulation; (ii) we

introduced a simply bounded formulation in the case when

the positions of the feet are predetermined; (iii) we used

a more general penalty function in the LMPC formulation

when foot adaptation is performed online, hence adding more

flexibility to the design and tuning of the LMPC scheme

(exact penalization for a given set of disturbances can be

achieved); (iv) we presented a way to approximate the double

support constraints, so that they could be considered even in

the case when foot adaptation is performed online, leading

to more flexibility when applying the LMPC scheme to

different types of walking patters.
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