Digital Image Processing

Part 3: Fourier Transform and Filtering in the Frequency Domain

Achim J. Lilienthal
AASS Learning Systems Lab, Dep. Teknik
Room T1209 (Fr, 11-12 o'clock)
achim.lilienthal@oru.se

Course Book Chapter 4
2 Relation Between Spatial and Frequency Filters

- Derivatives and their Fourier Transform

\[
\mathcal{F} \left[\frac{d^n f(x)}{dx^n} \right] = (ju)^n \mathcal{F}[f(x)]
\]

- Laplacian in the Fourier Domain

\[
\mathcal{F} [\nabla^2 f(x, y)] = -(u^2 + v^2) F(u, v)
\]

\[\Rightarrow H_{\text{Laplacian}} (u, v) = -(u^2 + v^2)\]
2 Relation Between Spatial and Frequency Filters

- Derivatives and their Fourier Transform

\[\mathcal{F} \left[\frac{d^n f(x)}{dx^n} \right] = (ju)^n \mathcal{F}[f(x)] \]

- Laplacian in the Fourier Domain

\[\nabla^2 f(x, y) \Leftrightarrow -\left[\left(u - \frac{M}{2} \right)^2 + \left(v - \frac{N}{2} \right)^2 \right] F(u, v) \]
2 Relation Between Spatial and Frequency Filters

- Laplacian in the Fourier Domain
2 Laplacian in the Fourier Domain

Laplacian in the Spatial Domain

\[
\mathcal{F}^{-1}[-(u^2 + v^2)(-1)^{u+v}(-1)^{x+y}]
\]
2 Deriving Spatial Filter Masks

General Idea

- select a filter in the frequency domain
- transform this filter to the spatial domain
- try to specify a small filter mask that captures the "essence" of the filter function
Other Filters

- **bandpass**
 - allows frequencies in a band between the two frequencies D0 and D1

- **bandstop**:
 - stops frequencies in a band between the two frequencies D0 and D1

- **non-symmetric filters**:
 - allow different frequencies in the u and v direction
Recovering Intrinsic Images, Homomorphic Filtering
3 Image Formation

- Reminder: Image Formation Model
 - illumination \(i(x,y) \) from a source
 - reflectivity \(r(x,y) = \text{reflection} / \text{absorption} \text{ in the scene} \)
 - \(f(x,y) = r(x,y) \cdot i(x,y) \)
3 Intrinsic Images

Intrinsic Images

"midlevel description" of scenes

- proposed by Barrow and Tenebaum
- not a full 3D description of the scene
- viewpoint dependent
- physical causes of changes in illumination are not made explicit
3 Intrinsic Images

- Intrinsic Images
 - "midlevel description" of scenes
 - proposed by Barrow and Tenebaum
 - "The observed image is a product of two images: an illumination image and a reflectance image."
3 Intrinsic Images

- "midlevel description" of scenes
- (input) image is decomposed into two images …

from "Deriving Intrinsic Images From Image Sequences", Yair Weiss, Proc. ICCV 2001
3 Intrinsic Images

Intrinsic Images

- "midlevel description" of scenes
- (input) image is decomposed into two images ...
 - a reflectance image

from "Deriving Intrinsic Images From Image Sequences", Yair Weiss, Proc. ICCV 2001
3 Intrinsic Images

- Intrinsic Images
 - "midlevel description" of scenes
 - (input) image is decomposed into two images …
 - a reflectance image and
 - an illumination image

\[\text{Input} = r(x,y) \times i(x,y) \]
Intrinsic Images

- "midlevel description" of scenes
- "The observed image is a product of two images: an illumination image and a reflectance image."
 - segmentation on the intrinsic reflectance should be much simpler than on the original image
 - 3D information can be obtained from the illumination picture

\[\text{Input} = r(x,y) \times i(x,y) \]
3 Intrinsic Images

Intrinsic Images

"midlevel description" of scenes

(input) image is decomposed into two images ...
 a reflectance image and
 an illumination image

but: decomposition is an ill-posed problem
 number of unknowns is twice as high as the number of equations
 (for example: set \(i(x,y) = 1 \rightarrow r(x,y) = f(x,y) \))

\[
f(x, y) = i(x, y) r(x, y)
\]
3 Homomorphic Filtering

Idea: Separate Illumination and Reflectance

\[f(x, y) = i(x, y) r(x, y) \]

- not separable directly …

\[\mathcal{F}[f(x, y)] \neq \mathcal{F}[i(x, y)] \mathcal{F}[r(x, y)] \]

- … but the logarithm is separable

\[z(x, y) \equiv \ln[f(x, y)] \]

\[\mathcal{F}[z(x, y)] = \mathcal{F}[\ln[i(x, y)]] + \mathcal{F}[\ln[r(x, y)]] \]

\[= Z(u, v) = F_i(u, v) + F_r(u, v) \]
3 Homomorphic Filtering

- Frequency Domain Approximation to Homomorphic Filtering – Assumption
 - illumination component varies slowly
 - reflectance component tends to vary abruptly
 ⇒ use filter that affects low- and high-frequency components in a different way (decreases influence of illumination, increases influence of reflectance)

\[f(x, y) = i(x, y) r(x, y) \]
\[\gamma_L < 1 \]
\[\gamma_H > 1 \]
3 Homomorphic Filtering

Idea: Separate Illumination and Reflectance

\[
g(x, y) = e^{s(x, y)} = e^{i'(x, z)} e^{r'(x, z)}
\]

\[f(x, y) \xrightarrow{\ln} \text{DFT} \xrightarrow{H(u, v)} (\text{DFT}^{-1}) \xrightarrow{\exp} g(x, y)\]

\[
Z(u, v) = F_i(u, v) + F_r(u, v) = \mathcal{F}[\ln[i(x, y)]] + \mathcal{F}[\ln[r(x, y)]]
\]

\[
S(u, v) = H(u, v)Z(u, v) = H(u, v)F_i(u, v) + H(u, v)F_r(u, v)
\]

\[
s(x, y) = \mathcal{F}^{-1}[S(u, v)] = \mathcal{F}^{-1}[H(u, v)F_i(u, v)] + \mathcal{F}^{-1}[H(u, v)F_r(u, v)] = i'(x, y) + r'(x, y)
\]
3 Homomorphic Filtering

Example

- consider non-uniform illumination

![Image of a person and a disturbance pattern]
3 Homomorphic Filtering

Example

- histogram equalization does not perform well
3 Homomorphic Filtering

Example

- homomorphic filtering

homomorphic filtering
3 Remarks

Homomorphic Filtering Assumption True?
["Deriving Intrinsic Images From Image Sequences", Yair Weiss, Proc. ICCV 2001]

- edges due to illumination often have as high a contrast as those due to reflectance changes
 - possible solution: deriving intrinsic images from image sequences
3 Remarks

- Recovering Intrinsic Images from a Single Image

- use colour information

Original Image
3 Remarks

- Recovering Intrinsic Images from a Single Image

 - use colour information

 - find chromaticity changes by classifying image derivatives by thresholding scalar product of normalized RGB vector neighbours

Original Image

Shape Image
3 Remarks

- Recovering Intrinsic Images from a Single Image

- use colour information

 find chromaticity changes by classifying image derivatives by thresholding scalar product of normalized RGB vector neighbours

![Original Image](image1.png) ![Shape Image](image2.png) ![Reflectance Image](image3.png)
3 Remarks

- Recovering Intrinsic Images from a Single Image

 - use colour information
 - learn appearance models of shading patterns
 - classify gray-scale image

(a) Original Image
3 Remarks

- Recovering Intrinsic Images from a Single Image

 - use colour information

 - learn appearance models of shading patterns

 - classify gray-scale image

(a) Original Image (b) Shading Image
3 Remarks

- Recovering Intrinsic Images from a Single Image
 - use colour information
 - learn appearance models of shading patterns
 - classify gray-scale image

(a) Original Image
(b) Shading Image
(c) Reflectance Image
3 Remarks

- Recovering Intrinsic Images from a Single Image

 - use colour information

 - learn appearance models of shading patterns

 - classify gray-scale image

 - propagate evidence (MRF model with learned parameters)
3 Remarks

Recovering Intrinsic Images from a Single Image

- use colour information +
- learn appearance models of shading patterns +
- propagate evidence (MRF model with learned parameters)
3 Remarks

- Recovering Intrinsic Images from a Single Image

 - use colour information +
 - learn appearance models of shading patterns +
 - propagate evidence (MRF model with learned parameters)

(a) Original Image
(b) Shading Image
3 Remarks

Recovering Intrinsic Images from a Single Image

- use colour information +
- learn appearance models of shading patterns +
- propagate evidence (MRF model with learned parameters)
3 Remarks

- Recovering Intrinsic Images from a Single Image

(a) Original Image
3 Remarks

Recovering Intrinsic Images from a Single Image

(a) Original Image (b) Shading Image
3 Remarks

Recovering Intrinsic Images from a Single Image

(a) Original Image (b) Shading Image (c) Reflectance Image
Properties of the Fourier Transform
4 Properties of the Fourier Transform

Translation

\[f(x - x_0, y - y_0) \iff F(u, v)e^{-j2\pi(\frac{u x_0}{M} + \frac{v y_0}{N})} \]

a shift in \(f(x,y) \) does not affect \(|F(u,v)| \)
4 Properties of the Fourier Transform

- **Translation**
 - A shift in \(f(x,y) \) does not affect the spectrum \(|F(u,v)| \)
4 Properties of the Fourier Transform

- Distributive Over Addition
 \[\mathcal{F} [f_1(x, y) + f_2(x, y)] = \mathcal{F} [f_1(x, y)] + \mathcal{F} [f_2(x, y)] \]

- Not Distributive Over Multiplication
 \[\mathcal{F} [f_1(x, y) f_2(x, y)] \neq \mathcal{F} [f_1(x, y)] \mathcal{F} [f_2(x, y)] \]

- Scaling
 \[af(x, y) \Leftrightarrow aF(u, v) \quad f(ax, by) \Leftrightarrow \frac{1}{|ab|} F(u / a, v / b) \]

- Rotation
 \[f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \varphi + \theta_0) \]
4 Properties of the Fourier Transform

Rotation

Rotating \(f(x,y) \) rotates \(F(u,v) \) by the same angle.
4 Properties of the Fourier Transform

- **Periodicity**
 \[F(u, v) = F(u + M, v) = F(u, v + N) = F(u + M, v + N) \]
 \[f(x, y) = f(x + M, y) = f(x, y + N) = f(x + M, y + N) \]
 - the discrete Fourier transform is periodic
 - also the inverse of the discrete Fourier transform is periodic

- **Conjugate Symmetry**
 \[F(u, v) = F^*(-u, -v) \]
 \[\Rightarrow |F(u, v)| = |F^*(-u, -v)| \]
 - the spectrum is symmetric about the origin
4 Properties of the Fourier Transform

Separability

\[F(u, v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j2\pi(ux/M + vy/N)} = \]

\[= \frac{1}{M} \sum_{x=0}^{M-1} e^{-j2\pi ux/M} \frac{1}{N} \sum_{y=0}^{N-1} f(x, y) e^{-j2\pi vy/N} = \]

\[= \frac{1}{M} \sum_{x=0}^{M-1} e^{-j2\pi ux/M} F(x, v) = \mathcal{F}_u[\mathcal{F}_v[f(x, y)]] \]

- \(F(x, v) \) is the Fourier transform along one row
- \(F(u, v) \) can be obtained by two successive applications of the simple 1D Fourier transform instead of by one application of the more complex 2D Fourier transform
Properties of the Fourier Transform

Fourier Transform

<table>
<thead>
<tr>
<th>Function</th>
<th>Fourier transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta(x, y))</td>
<td>1</td>
</tr>
<tr>
<td>(\frac{\partial f}{\partial x}(x, y))</td>
<td>(u\mathcal{F}(f)(u, v))</td>
</tr>
<tr>
<td>(0.5\delta(x + a, y) + 0.5\delta(x - a, y))</td>
<td>(\cos 2\pi au)</td>
</tr>
<tr>
<td>(e^{-\pi(x^2+y^2)})</td>
<td>(e^{-\pi(u^2+v^2)})</td>
</tr>
<tr>
<td>(box_1(x, y))</td>
<td>(\frac{\sin u \sin v}{u ; v})</td>
</tr>
<tr>
<td>(f(ax, by))</td>
<td>(\frac{\mathcal{F}(f)\left(\frac{u}{a}, \frac{v}{b}\right)}{ab})</td>
</tr>
<tr>
<td>(\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x - i, y - j))</td>
<td>(\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(u - i, v - j))</td>
</tr>
<tr>
<td>((f \ast g)(x, y))</td>
<td>(\mathcal{F}(f)\mathcal{F}(g)(u, v))</td>
</tr>
<tr>
<td>(f(x - a, y - b))</td>
<td>(e^{-i2\pi(au+bv)}\mathcal{F}(f))</td>
</tr>
</tbody>
</table>

from "Computer Vision – A Modern Approach", Forsyth and Ponce, Prentice Hall, 2002
4 Correlation

Definition of Correlation

\[f(x, y) \circ h(x, y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^*(m, n)h(x + m, y + n) \]

- compare with convolution

\[f(x, y) \ast h(x, y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n)h(x - m, y - n) \]

- also the need for padding
4 Correlation

Template Matching

\[f(x, y) \odot h(x, y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^*(m,n) h(x+m, y+n) \]

- \(f(x,y) \) is the image
- \(h(x,y) \) is a template
- if \(h(x,y) \) matches somewhere in \(f(x,y) \) the correlation will be maximal there

\[f(x, y) \odot h(x, y) \Leftrightarrow F^*(u,v)H(u,v) \]

\[f^*(x, y) \odot h(x, y) \Leftrightarrow F(u,v)H(u,v) \]
4 Correlation

Template Matching – Example 1

\[f_1(x,y) \text{ – padded} \quad h(x,y) \text{ – padded} \]
4 Correlation

Template Matching – Example 1

$f_1(x,y)$ – padded

$\mathcal{F}^{-1}[F_1^*(u,v)H(u,v)]$ – rescaled
4 Correlation

Template Matching – Example 1

\[\mathcal{F}^{-1} [F_1^*(u,v)H(u,v)]^4 \] – rescaled^4

\[f_1(x,y) \] – padded
4 Correlation

Definition of Correlation (from previous slide)

\[f(x, y) \circ h(x, y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^*(m, n)h(x + m, y + n) \]

Correlation Theorem

\[f(x, y) \circ h(x, y) \Leftrightarrow F^*(u, v)H(u, v) \]

\[f^*(x, y) \circ h(x, y) \Leftrightarrow F(u, v)H(u, v) \]
4 Correlation

Template Matching – Example 2

\[f_2(x,y) \text{ – padded} \]

\[h(x,y) \text{ – padded} \]
4 Correlation

- Template Matching – Example 2

\[f_2(x,y) \text{ – padded} \quad \mathcal{F}^{-1}[F_2^*(u,v)H(u,v)]^4 \text{ – rescaled}^4 \]
4 Correlation

Template Matching – Example 3

\[f_3(x,y) \text{ – padded} \quad h(x,y) \text{ – padded} \]
4 Correlation

Template Matching – Example 3

$f_3(x,y)$ – padded

$\mathcal{F}^{-1} [F_3^*(u,v)H(u,v)]^8$ – rescaled

Filters as Templates

- Filters respond most strongly to patterns that look like the filter.
- The kernel looks like the effect it is intended to detect.
- Filtering has an analogy to computing a dot product, which measures similarity to the filter kernel and results in a stronger response in brighter areas.
- Filtering can be seen as changing the basis.
 - Convolution can be seen as changing the base of an image.
 - Base: vectors \(\delta \)-functions \(\rightarrow \) base: shifted versions of the filter.
 - This process will typically lose information (coefficients on the new base can be redundant) but it might expose image structure in a useful way.
Nyquist-Shannon Sampling Theorem
5 Nyquist-Shannon Sampling Theorem

- Aliasing / Undersampling, Moiré Pattern

[Images showing a brick wall with and without Moiré Pattern, indicating decrease in resolution]
How to avoid Aliasing Problems?

- sampling
 - continuous function (irradiance in the camera) \rightarrow discrete grid
 - number of samples relative to the function seems important
 - a signal sampled too slowly is misrepresented by the samples

from "Computer Vision – A Modern Approach", Forsyth and Ponce, Prentice Hall, 2002
5 Nyquist-Shannon Sampling Theorem

- Sampling a Signal in 1D

- Reconstruction of the Original Continuous Signal
 - which sample rate?
 - how to derive the continuous signal from the samples?
 - how to model the sampling process?
Sampling a Signal in 1D

How to Model the Sampling Process?

- continuous model of a sampled signal needed
- → sum of delta functions (2D: "bed-of-nails function")
 - sampling process = multiplication with a sampling function $f_{\text{III}}(x)$
Considering Band-Limited Signals

- signal band-width: band/range of non-zero frequencies
- a band-limited signal is constrained in terms of how fast it can change
5 Nyquist-Shannon Sampling Theorem

Fourier Transform of a Sampled Signal

\[f(x) \cdot f_{III}(x) \]

- sampling = multiplication with the sampling function in the spatial domain
5 Nyquist-Shannon Sampling Theorem

Fourier Transform of a Sampled Signal

sampling = multiplication with the sampling function in the spatial domain

equals convolution in the frequency domain

\[f(x) \cdot f_{\text{III}}(x) \rightarrow F(u) \ast F_{\text{III}}(u) \]

Fourier transform of a "Dirac comb" is again a Dirac comb

(\rightarrow\text{Poisson summation})
5 Nyquist-Shannon Sampling Theorem

Fourier Transform of a Sampled Signal

- sampling = multiplication with the sampling function in the spatial domain
- equals convolution in the frequency domain
5 Nyquist-Shannon Sampling Theorem

- Fourier Transform of a Sampled Signal

- non-overlapping support of the "shifted Fourier Transforms"

→ we can reconstruct the signal from the sampled versions
5 Nyquist-Shannon Sampling Theorem

Reconstruction of the Signal

From "Computer Vision – A Modern Approach", Forsyth and Ponce, Prentice Hall, 2002
Reconstruction of the Signal

but if support regions do overlap?

- we can't reconstruct the signal
- Fourier transform in the regions that overlap can't be determined
Nyquist-Shannon Sampling Theorem

Fourier Transform of a "Dirac comb"

\[f_{III}(x) \xrightarrow{\mathcal{F}} F_{III}(u) \]

reciprocal behaviour of \(\Delta x \) and \(\Delta u \)
Nyquist-Shannon Sampling Theorem

- Sampling Theorem
 - There should be no overlap between the repetitions of the FT of the signal.
 - The sampling interval should be at least the double of the highest frequency (1/w) present in the signal.

\[2w \leq \frac{1}{\Delta x} \Rightarrow \Delta x \leq \frac{1}{2w} \]