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Abstract— Soaring refers to the exploitation of free energy
available in the environment. One such source of free energy is
thermals (columns of rising hot air) which are routinely used
by birds and glider pilots to increase their flight range. In this
paper, we deal with a surveillance problem in which a group of
gliders have to visit a set of interest points. The gliders can use
thermals to visit more interest points by increasing their flight
range. We present a path planning algorithm which makes
sure that the gliders visit as many interest points as possible,
while respecting the dynamic constraints of the gliders. We
decompose the problem into two parts. The first part deals
with planning the best path, for a single glider, while only
considering a subset of interest points. The path is planned
using Continuous Curvature turns and a graph search based
approach. The second part deals with determining the best
allocation of interest points for each glider. We also present
optimality guarantees for our algorithm.

I. INTRODUCTION

Recent advances in embedded electronics and advanced
control systems has lead to a rapid increase in the usage
of Unmanned Aerial Vehicles (UAV)s. Already used by
hobbyists UAVs are being proposed for a diverse range of
applications, such as precision agriculture [1], public safety
applications [2], surveillance [3] and extended coverage [4].
Since several of these applications either require (or benefit
from) the UAVs having a high range, methods to increase the
range of these UAVs need to be investigated. Furthermore,
with a potential explosion in the number of UAVs around the
world, increasing flight range can also lead to considerable
cost saving for the UAV industry.

Keeping these goals into consideration this paper focuses
on one particular method to increase the range of fixed-wing
UAVs. Usually referred to as soaring this method utilizes
prevalent atmospheric phenomenon in order to gain energy
during flight. Furthermore, one particular type of soaring that
has shown promising results is the use of rising columns of
hot air, also known as thermals. The use of thermals has
been shown to be a viable method of increasing flight range
of gliders [5].

This paper considers a particular surveillance problem
which requires high range. Specific points on the ground
(called interest points) have to be visited by a group of
gliders. The gliders are constantly losing height in regular
flight, but they can use thermals to gain height and hence
increase range. The goal of this paper is to plan paths for
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the gliders so that they visit as many interest points as
possible, while using thermals if required. These paths are
also required to be valid and feasible. A path is considered
valid if the glider does not run out of height while traveling
on that path. A path is considered feasible if the dynamic
constraints of the glider are satisfied while executing the path.

This problem is referred to as the multi-agent problem
in this paper. To the best of the author’s knowledge this
particular problem has not been dealt with in literature. This
paper proposes a novel approach to solve the problem. This
approach entails decomposing the multi-agent problem into
multiple single-agent problems.

In a single agent problem a glider is limited to a subset
of interest points allocated to it. To solve this problem we
need to determine a (valid and feasible) path for the glider,
which maximizes the number of visited interest points from
its allocated interest points. Notice that a glider may not
be able to visit all of its allocated interest points due to
validity constraints. We first introduce a class of curves
which we refer to as legs. A leg provides a feasible path for
a glider, going from one waypoint (interest point or thermal)
to another. For a path to be feasible its curvature and rate
of change of curvature (also called sharpness [6]) should
be bounded by predefined constants. The reason for this is
discussed in section II. This paper uses continuous curvature
(CC) turns [6] to plan feasible paths for the gliders. These
legs are then joined together to make paths for each glider,
using a modification of the graph-search based approach
proposed in paper [7]. The complete path planned for a glider
is referred to as a composite path. The proposed algorithm
is guaranteed to find the best composite path for a glider.

Now, the multi-agent problem is solved by finding the
best allocation for each glider. The allocation which max-
imizes the number of interest points visited by the gliders
collectively, is the best allocation. We also present optimality
guarantees for both parts of the algorithm.

A. Related Work

The multi-agent problem is very similar to the Team
Orienteering Problem (TOP). In TOP [8] a group of robots
have to visit a set of points while minimizing the total
distance traveled. Exact approaches to solve the TOP have
been proposed in papers [9] and [10]. There has also been
work in heuristic methods to solve the TOP [11], [12].
Authors of [7] proposes a graph-search based method. This
paper modifies this approach to solve the problem because
it is an exact approach and lends itself well to modification.

As for planning feasible paths Dubin’s curves have been
widely used [13], [14]. Dubin’s curves have bounded cur-



vature but unbounded sharpness. Paths with continuous cur-
vature have been proposed by authors of papers [16] and
[17], but bounds on sharpness are not considered. Authors
of paper [6] propose a suboptimal method for planing paths
with bounded curvature and sharpness, and hence we modify
this approach to plan feasible paths.

The paper is organized as follows. Section II formulates
the problem rigorously. Section III deals with, planning a
leg, for a glider, from any given start configuration (position
and orientation) to a goal position. Section IV solves the
single-agent problem. Section V, describes how to use the
method in section IV to solve the multi-agent problem.
Section VI presents the simulation results of the proposed
solution. Section VII concludes the paper.

II. PROBLEM STATEMENT

This section will present the mathematical formulation
for the two (the single-agent and multi-agent) problems
separately. First, however, we introduce some details of the
problem scenario.

There are a total of nip interest points each denoted by ipj
where j ∈ {1, .., nip}. These points are located at positions
pipj ∈ R2. There are nt thermals and each is denoted by tk
where k ∈ {1, .., nt}. The height gained by visiting thermals
and the positions of the thermals are assumed to be known
a priori. Moreover, the thermals are treated as points and
we assume that the gliders gain height instantaneously when
they visit a thermal. They are positioned at ptk ∈ R2 and
the height any glider can gain by visiting them is denoted
by htk ∈ R+. Similarly we define that the height attained
by visiting an interest point is 0, hipj = 0,∀j.

We have a total of ng identical gliders. Each glider i
has a pre-specified start position p0i ∈ R2 and orientation
θ0i ∈ [−π, π]. The gliders must reach their respective final
positions located at pfi ∈ R2. The starting height of the
gliders is denoted by h0i ∈ R+.

Ideally, the height lost per horizontal distance traveled
by the glider should be minimized. This corresponds to
minimizing the angle of descent γd,i of the glider. As shown
in [18] this can be achieved by choosing an appropriate value
of angle of attack. For this angle of attack, the corresponding
angle of descent is γdmin

. Since the gliders are identical, it is
the same for all gliders. We assume that a controller ensures
γd,i = γdmin

for all gliders. Now we may ignore the vertical
degree of freedom of the gliders.

A. Single-agent problem

Each glider i is allocated a set of interest points denoted
by ξi, where ξi ⊆ {ip1, .., ipnip

}. The path glider i takes
through ξi is called a composite path. The composite path
can be composed of multiple legs, where each leg is a path
from one waypoint to another.

1) Visitation order: The order in which the glider i visits
the waypoints is denoted by λi such that,

λi = {λi,j} : λi,j ∈ ξi ∪ {t1, .., tnt} ∪ {f},
i ∈ {1, .., ng}, j ∈ {1, .., n(λi)} ,

where f represents the final position of the glider and n()
is the cardinality operator. λi,j is the jth waypoint in ith
glider’s composite path. It can only be an interest point
allocated to i, a thermal or the final position of i. Notice
that a glider does not have to visit all its allocated interest
points. The total number of unvisited interest points in λi is
represented by k(λi),

k(λi) = n(ξi)−
nip∑
k=1

g(k,λi) (1)

where g(k,λi) checks if waypoint k has been visited in λi,

g(k,λi) =

{
1 if k = λi,j , 1 ≤ j ≤ n(λi)− 1
0 otherwise (2)

2) Composite path and height profile: Each λi has a com-
posite path associated with it. The jth leg in the composite
path is denoted by ri,j . It is parameterized by arc-length of
the leg li,j ∈ [0, lfi,j ], where lfi,j is the total arc-length of the
leg. The glider dynamics have non-holonomic constraints,
meaning ri,j is defined by the orientation of the glider θi,j ,

ri,j(li,j ,λi) =

li,j∫
0

(
cos(θi,j(u))
sin(θi,j(u))

)
du+ ri,j(0,λi) , (3)

κi,j(li,j ,λi) = dθi,j(li,j)/dli,j , (4)

σi,j(li,j ,λi) = dκi,j(li,j)/dli,j , (5)

dhi,j(li,j ,λi)/dli,j = − tan(γdmin) , (6)

κi,j and σi,j denote the curvature and sharpness of the leg,
respectively. hi,j represents the height of the glider, which is
decreasing at a constant rate throughout a leg. λi in the above
stated equations may sometimes be omitted for simplicity.
The first leg must satisfy start configuration constraints,

ri,1(0) = p0i , θi,1(0) = θ0i , ∀i . (7)

All the following legs must start at a corresponding waypoint
in λi and maintain continuity of orientation with the last leg,

ri,j(0) = pλi,j−1
, θi,j(0) = θi,j−1(lfi,j) . (8)

Similarly, each leg j in the composite path should end at
either its corresponding waypoint or the final position,

ri,j(l
f
i,j) =

{
pλi,j

if λi,j 6= f

pfi if λi,j = f .
(9)

Each leg should also satisfy the continuity of curvature
between consecutive legs,

κi,j+1(0) = κi,j(l
f
i,j) . (10)

The glider has a starting height h0i and whenever the glider
visits a thermal it gets an increase in its height,

hi,1(0) = h0i , hi,j+1(0) = hi,j(l
f
i,j) + hλi,j

.

3) Feasibility and Validity: The composite paths must
satisfy the dynamic constraints on the glider. The gliders
have a constraint on the maximum roll angle, which means



that the glider cannot execute tight turns. This corresponds to
a maximum curvature constraint on the path. Moreover, there
is an upper limit on the roll rate the glider can achieve. This
corresponds to an upper limit on the sharpness of the path.
Hence, a path must have bounded curvature and sharpness,

|κi,j(li,j)| ≤ κmax : 0 ≤ li,j ≤ lfi,j ,∀i,∀j , (11)

|σi,j(li,j)| ≤ σmax : 0 ≤ li,j ≤ lfi,j ,∀i,∀j . (12)

In the paper we assume that κmax and σmax have been
predetermined for the gliders. This is called the feasibility
constraint. Furthermore, the height of the glider must always
be positive. This is called the validity constraint,

hi,j(li,j) ≥ 0 for 0 ≤ li,j ≤ lfi,j ,∀i,∀j .

This can be expressed as hi,j(l
f
i,j) > 0, since hi,j is

constantly decreasing throughout a leg. hi,j(l
f
i,j) is the height

of the glider at the start of the composite path minus the net
height lost while traveling,

hi,j(l
f
i,j) = h0i +

nt∑
l=1

g(tl,λi)htl − tan(γdmin
)

j∑
k=1

lfi,k > 0 .

(13)
4) Optimization Problem: The problem now is to find a

visitation order which minimizes unvisited allocated interest
points. The order should also be complete, meaning that it
ends at the final position of the glider. If there are multiple
visitation orders which satisfy these criteria, we should find
the one with smallest arc-length of the composite path,

argmin
λ∗

i

∑
∀j

lfi,j s.t. λ∗i = argmin
λi

k(λi) (14)

s.t. λi,n(λi) = f and ri,j(λi) satisfies (11)− (13) .

The order λi which satisfies (14), represents the best visi-
tation order for a given waypoint allocation ξi to glider i.
We call this the optimal visitation order λ

ξi
i for waypoint

allocation ξi. Similarly, the optimal path and the number
of unvisited interest points for allocation ξi are denoted
similarly as rξi

i,j and K(ξi), respectively.

λ
ξi
i = λi, r

ξi
i,j = ri,j(λi), K(ξi) = k(λi) . (15)

B. Multi-agent problem

All ξi are mutually exclusive and jointly exhaustive mean-
ing, ξi ∩ ξj = ∅, i 6= j and

⋃ng

i=1 ξi = {ip1, .., ipnip
},

respectively. The set of waypoint allocation for all gliders
is denoted by Ξ = {ξi}.

The multi-agent problem is to find the allocations ξi
with the least number of unvisited interest points. If there
are multiple allocations with the same minimum number of
unvisited interest points, we should find the one with least
accumulated arc-length of composite paths.

argmin
Ξ∗

ng∑
i=1

∑
∀j

lfi,j(λ
ξ∗
i
i ) s.t. Ξ∗ = argmin

Ξ

ng∑
i=1

K(ξi)

(16)
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C. Assumptions

Assumption 1: θlim , κ2max/σmax < π.
Assumption 2: lmin > 2RT (κmax, σmax), where RT ∈

R+ is defined in [6] and lmin is the smallest euclidean
distance between any two waypoints, start points or final
points of any glider.
Assumption 1 is need for the legs to be feasible. If assump-
tion 2 is satisfied, a leg is guaranteed to exist. It might seem,
as if assumption 1 can be trivially satisfied by choosing a new
maximum curvature κ̂max < κmax. But this might cause us
to no longer satisfy assumption 2, as Figure 1 shows that
RT increases as κmax decreases.

III. PLANNING A LEG IN THE COMPOSITE PATH OF A
GLIDER

This section provides a methodology for planning a leg
in a glider’s composite path. The purpose of this leg is
to provide a path from a start configuration (position and
orientation) to a goal position. The methodology is a mod-
ification of the approach used in [6]. A leg is composed
of two segments: (i) a Continuous Curvature (CC) turn that
changes the orientation of the path by an angle β, and (ii)
a line segment that completes the leg. The usage of CC
turn guarantees that the curvature and sharpness of the leg
are bounded, under the assumptions discussed above. An
example of the leg obtained by this methodology is shown
in Figure 2.

In this section we will focus on one leg denoted by r(l).
Subscripts i and j have been omitted for simplicity. The
starting position of the leg is denoted by r(0) = p0, starting
orientation by θ(0) = θ0 and goal position by r(lf ) = pg .
Without loss of generality we assume that pg lies on the left
hand side of the start configuration, meaning that the CC
turn is anti-clockwise. In case this is not true, a clockwise
CC turn is used instead.

A. CC turns

The CC turn starts at r(0) and ends at r(lcc) where lcc <
lf . The purpose of the CC turn is to change the orientation
of the leg until it points to the final position. Therefore, the
first step is to calculate the required change in orientation
β. The value of β is calculated in Appendix 1 and given by
equation (36). This is accomplished by using the fact that
the end points of the CC turns (as described in [6]) satisfy
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two conditions. They exist on the circle Cfl , and the turn
makes an angle γ with Cfl at the endpoints. The position and
radius of Cfl is dependent on κmax and σmax. A graphical
illustration of this condition is provided in figure 3.

There are two types of CC turns depending on the value
of β. The arclength of each CC turn, is given as,

lcc(β) =

{
2
√
β/σe if β ∈ [0, θlim)

β/κmax + κmax/σmax if β ∈ [θlim, 2π] .
(17)

This expression is taken from [6]. The curvature profiles of
both CC turns are piece-wise linear as shown in figure 4.
For β ∈ [0, θlim), the curvature profile of the CC turn is,

κ(l) =

{
σel for 0 ≤ l ≤ lcc/2

σe(l
cc − l) for lcc/2 < l ≤ lcc (18)

where the value of σe is given in the paper [6]. σe will
always exist if assumption 1 is satisfied. If β ∈ [θlim, 2π],
the curvature profile of the CC turn is,

κ(l) =

 σmaxl for 0 ≤ l ≤ lcl
κmax for lcl < l ≤ lcc − lcl
σmax(lcc − l) for lcc − lcl < l ≤ lcc

(19)

where lcl = κmax/σmax. CC turns are guaranteed to satisfy
curvature and sharpness constraints (11) and (12), if they
exist. This formulation allows for the curvature and sharpness
of the path at l = 0 and l = lcc to be 0 which automatically
satisfies the continuity of curvature constraint in equation
(10). The orientation at the end of the CC turn is,

θ(lcc) = θ(0) + β . (20)

B. Line segment

The next part in the leg is a line segment which starts
at r(lcc) and ends at r(lf ). The orientation, curvature and
sharpness of the line segment is,

θ(l) = θ(lcc), κ(l) = σ(l) = 0 for lcc < l ≤ lf (21)

The total arc length of the leg lf is derived in appendix 1
and given in equation (34).

Each leg r(l) can be constructed by using the curvature
profile κ(l) of the leg and its initial conditions.

IV. SINGLE-AGENT PROBLEM

The aim of this section is to solve the single-agent
problem. This corresponds to finding a composite path which
i) is valid and ii) maximizes the number of (allocated)
interest points visited by the glider. This is achieved by
choosing the best visitation order, since the composite path
is uniquely determined by its corresponding visitation order.
The problem of finding the best visitation order is an integer
programming problem and we formulate it as a graph search.
The graph is dependant on the allocation (of waypoints) ξi
and denoted by Γi(ξi). Each node in the graph is associated
with a visitation order.

This section is organized in the following manner. First,
we explain how to construct Γi. Next, the algorithm for
graph search over Γi is presented. This is followed by lemma
1 which states that the graph search finds the node with
the best visitation order. Finally, we introduce a measure of
’goodness’ of the waypoint allocation ξi, which is used in
section V.

A. Construction of graph Γi(ξi)

Let φ denote a node in Γi. We denote the visitation order
associated with φ as λi(φ). λi(φ) has a composite path made
up of legs ri,j(λi) and a height profile hi,j(λi) associated
with it. The legs of the composite path are individually
constructed as described in section III with the initial and
final conditions being dictated by equations (7)-(9). Its easy
to see why the composite path will be uniquely determined
by the order λi(φ) and the boundary conditions. The root
(starting) node of the graph is denoted by φ0. The order
associated with this node, λi(φ0) = {} is empty and hence
there is no composite path. A node is a goal node if last
waypoint in its associated visitation order is the final position
of the glider. The set of goal nodes is denoted by Φf . As in
all graphs, goal nodes do not have successors.

The successor to node φ is obtained, by appending a leg
to the end of composite path ri,j(λi(φ)). This can be done
by adding a thermal, an unvisited allocated interest point or
the final position to the end of λi(φ). The set of successors
of φ, Succ(φ) is defined as,

φ′ ∈ Succ(φ) only if λi(φ′) = {λi,1(φ), .., λi,n(φ), µ}
s.t. µ ∈ {ξi ∪ {t1, .., tnt} ∪ {f}} \ λi(φ) (22)

where n = n(λi(φ)), the number of waypoints in λi(φ).
Now we introduce some values associated with each φ which
help us determine the best node.

1) Arc length of a node: The arc length of the node,
denoted by SL(φ), is the total arc length of the composite
path associated with λi(φ).

SL(φ) =

n(λi(φ))∑
j=1

lfi,j , (23)

where lfi,j is the arc-length of the jth leg of the glider’s
composite path. It is defined in equation (34).



2) Cost of a node: Another quantity associated with the a
node φ is its cost VL(φ). The cost of a node determines the
order of expansion of the node in the graph search. Nodes
with less cost are chosen first. It is defined as,

VL(φ) =

{
SL(φ) if φ /∈ Φf

SL(φ) + k(λi(φ))PL if φ ∈ Φf ,
(24)

where PL =

(
h0i +

nt∑
k=1

htk + 1

)
/ tan(γdmin) . (25)

k() is defined in equation (1). The k(λi)PL term, is a penalty
term which penalizes the goal nodes with more unvisited
allocated interest points. This makes them less likely to be
expanded and makes the graph search optimal. For us to
find the correct node, PL has to be an upper bound on the
distance the glider can travel. This can be expressed as the
upper bound on height of the glider divided by tan(γdmin).
An upper bound on height of the glider is the starting height
of the glider plus the sum of the heights of all thermals
h0i +

∑
htk .

3) Validity of a node: A node is considered valid if its cor-
responding composite path is valid. The validity constraint
(13) can be expressed as,

SL(φ) <

(
h0i +

nt∑
l=1

g(tl,λi(φ))htl

)
/ tan(γdmin

) . (26)

B. Uniform cost graph search over Γi

Algorithm 1 Uniform Cost Graph Search

Require: i, p0i , h0i , p
f
i , ξi

1: Ω = {φ0}, φ = φ0

2: while φ /∈ Φf do
3: remove φ from Ω with the smallest VL(φ)
4: for all φ′ ∈ Succ(φ) do
5: calculate SL(φ′) and VL(φ′) as given in equations

(23) - (24)
6: if SL(φ′) satisfies equation (26) then
7: Insert φ′ into Ω with cost VL(φ′)
8: end if
9: end for

10: end while
11: φ̂ := φ
12: return φ̂, SL(φ̂), k(λi(φ̂))

Algorithm 1 presents the graph search over graph Γi. In
the algorithm Ω denotes the open set (the set of nodes yet to
be expanded), V ertices(ΓL) refers to the set of all possible
nodes in ΓL.

It is a uniform cost search which will return a goal node
φ̂ ∈ Φf . For a graph search to be optimal, meaning it finds
the node φ̂ s.t. VL(φ̂) ≤ VL(φ),∀φ ∈ Φf , the cost of a
successor node should be greater than or equal to the cost of
the parent node, as shown in the book [19]. For algorithm 1
this is shown easily. Consider a node φ and it successor φ′.
If the φ′ /∈ Φf , V (φ) = S(φ) and V (φ′) = S(φ′). As we

know that φ′ is obtained by adding a leg to the composite
path of φ, S(φ′) > S(φ), which leads to, V (φ′) > V (φ).
If the φ′ ∈ Φf , using similar reasoning we arrive at the
same conclusion. Hence, V (φ′) > V (φ). Lemma 1 presents
the soundness guarantees for the algorithm, meaning that
equations (26) and (14) are satisfied.

Lemma 1: A uniform cost search on the graph ΓL, as
described in Algorithm 1, returns the node φ̂, with k(λi(φ̂))
number of unvisited interest points. It is guaranteed that (a)
φ̂ is a valid goal node, and, (b) φ̂ has the minimum number
of unvisited interest points. Moreover, (c) for all nodes in
Φf with same number of unvisited interest points as φ̂, it
has the least arc-length.

Proof: (a) φ̂ is bound to be a goal node, since the while-
loop at line 4 exits only when a goal node is encountered.
Moreover, line 13 in the algorithm makes sure that no node
which is invalid is pushed into Ω, hence φ̂ is valid.

(b) We prove by contradiction. Suppose, φ̃ ∈ Φf , has less
unvisited interest points than φ̂, k(λi(φ̃)) < k(λi(φ̂)). Since
Algorithm 1 is optimal,

VL(φ̂) ≤ VL(φ̃) ,

SL(φ̂) + k(λi(φ̂))PL ≤ SL(φ̃) + k(λi(φ̃))PL ,

(k(λi(φ̂))− k(λi(φ̃)))PL ≤ SL(φ̃)− SL(φ̂) ,

(k(λi(φ̂))− k(λi(φ̃)))PL ≤
(
h0i +

nt∑
i=1

htk

)
/ tan(γdmin

) .

The last step was made possible by the fact that(
h0i +

∑nt

i=1 htk
)
/ tan(γdmin

) is an upper bound on SL(φ)
for any valid node φ. Using the definition of PL and the fact
that k(λi(φ̃))− k(λi(φ̂)) ≥ 1, we arrive at a contradiction.

(c) Assume another node φ̃ ∈ Φf , such that k(λi(φ̃)) =
k(λi(φ̂)). Since Algorithm 1 is optimal,

VL(φ̂) ≤ VL(φ̃) ,

SL(φ̂) + k(λi(φ̂))PL ≤ SL(φ̃) + k(λi(φ̃))PL ,

SL(φ̂) ≤ SL(φ̃) .

Hence φ̂ has the minimum arc-length for all goal nodes with
number of unvisited interest points equal to k(λi(φ̂)).

C. Arc-length of allocation ξi
In the next section we calculate the best allocation of

interest points. For that we define the arc-length SU () of
allocation ξi as,

SU (ξi) = SL(φ̂) . (27)

V. MULTI-AGENT PROBLEM

In this section we solve the multi-agent problem. This
corresponds to finding a feasible and valid composite path for
each glider such that they collectively visit as many interest
points as possible. We decompose this problem into many
single-agent problems by allocating a set of interest points
to each glider. The method described in section IV, returns
the most optimal composite path for that particular allocation
of interest points. Using this approach the problem now is



to find the best allocation of interest points for each glider.
First we introduce some values associated with each set of
allocations Ξ, which help us obtain the best interest point
allocation.

1) Accumulated arc-length: The accumulated arc-length
of a specific Ξ is denoted as SaU (Ξ) where,

SaU (Ξ) =

ng∑
i=1

SU (ξi) , (28)

here SU (ξi) is defined in equation (27).
2) Cost of an allocation: Another quantity associated with

an allocation is its cost VU (Ξ). It is defined as

VU (Ξ) = SaU (Ξ) + PU

ng∑
i=1

K(ξi) , (29)

where PU =

 ng∑
i=1

h0i +

nt∑
j=1

htj + 1

 / tan(γdmin
) , (30)

and K(ξi) is the total number of unvisited interest points
for allocation ξi, as expressed in (15). The PU

∑ng

i=1K(ξi)
term, is a penalty term which increases the cost of allocations
with more unvisited interest points and hence makes them
less optimal. To obtain the correct solution, PU should be
an upper bound on the distance the gliders can collectively
travel. This can be expressed as an upper bound on collective
height of the gliders divided by tan(γdmin

). An upper bound
on height of the gliders is given by

∑ng

i=1 h
0
i +

∑nt

j=1 htj .
The solution to the multi-agent problem is the set of

interest point allocations which minimizes the cost VU and
it is denoted by Ξ̂ = {ξ̂i}. Theorem 1 guarantees that Ξ̂
satisfies the optimality criteria (16).

Theorem 1: The set of interest point allocations Ξ̂ = {ξ̂i}
s.t. VU (Ξ̂) ≤ VU (Ξ), ∀Ξ is guaranteed to (a) have the least
number of unvisited interest points and (b) have the least
accumulated arc-length of all other Ξ with the same number
of unvisited interest points.

Proof: (a) Proof by contradiction. Suppose Ξ̃ =
{ξ̃i}, has fewer unvisited interest points

∑ng

i=1K(ξ̃i) <∑ng

i=1K(ξ̂i). By definition we have,

VU (Ξ̂) ≤ VU (Ξ̃) ,

SaU (Ξ̂) + PU

ng∑
i=1

K(ξ̂i) ≤ SaU (Ξ̃) + PU

ng∑
i=1

K(ξ̃i) ,(
ng∑
i=1

K(ξ̂i)−
ng∑
i=1

K(ξ̃i)

)
PU ≤ SaU (Ξ̃)− SaU (Ξ̂) ,

(
ng∑
i=1

K(ξ̂i)−
ng∑
i=1

K(ξ̃i)

)
PU ≤

∑ng

i=1 h
0
i +

∑nt

j=1 htj

tan(γdmin
)

.

The last step was made possible by the fact that the accumu-
lated arc-length is always upper bounded by the term on the
right hand side. Using the definition of PU and the fact that∑ng

i=1K(ξ̂i)−
∑ng

i=1K(ξ̃i) ≥ 1, we get a contradiction.
(b) Assume there is another set of allocation Ξ̃ with

the same number of unvisited interest points as Ξ̂,∑ng

i=1K(ξ̂i) =
∑ng

i=1K(ξ̃i). We have,

VU (Ξ̂) ≤ VU (Ξ̃) ,

SaU (Ξ̂) + PU

ng∑
i=1

K(ξ̂i) ≤ SaU (Ξ̃) + PU

ng∑
i=1

K(ξ̃i) ,

SaU (Ξ̂) ≤ SaU (Ξ̃) .

Hence Ξ̂ has the minimum accumulated transition cost for
equal number of unvisited interest points.

VI. SIMULATION RESULTS

In this section we present an example of cooperative
autonomous soaring of 2 gliders with 4 interest points and
4 thermals, meaning ng = 2, nip = 4, nt = 4. The maxi-
mum curvature κmax = 0.045m−1 and maximum sharpness
σmax = 0.001m−2. Using these values of κmax and σmax,

θlim = 2.02 rad, RT = 33.8 m

This satisfies assumption 1. The starting positions, orienta-
tions, heights and final positions of the gliders are,

p01 = (445, 709)Tm, p02 = (646, 754)Tm,

θ01 = −1.41rad, θ02 = 1.13rad, h01 = 600m, h02 = 500m,

pf1 = (765, 186)Tm, pf2 = (795, 489)Tm

The positions of interest points and thermals are,

pip1 = (97, 950)Tm, pip2 = (823, 34)Tm

pip3 = (694, 438)Tm, pip4 = (317, 381)Tm

pt1 = (743, 706)Tm, pt2 = (392, 32)Tm

pt3 = (655, 277)Tm, pt4 = (171, 46)Tm

The minimum distance between waypoints lmin = 108.4 m
and hence assumption 2 is satisfied. The height a glider can
gain by visiting the thermals and interest points is,

htj = 200m, 1 ≤ j ≤ 4, hipj = 0m, 1 ≤ j ≤ 4.

The minimum rate of descent of the gliders is chosen as
γdmin

= 0.349 radians.
The set of interest point allocations which minimizes VU

is Ξ̂ = {ξ̂i}, where the interest points allocated to the
first gliders are ξ̂1 = {ip2, ip4} and the interest points
allocated to the second glider are ξ̂2 = {ip1, ip3}. The
optimal visitation orders for each of these allocations are
λ
ξ̂1
1 = {ip4, t3, ip2} and λ

ξ̂2
2 = {t1, ip1, ip3}, respectively.

The optimal paths associated with ξ̂i, r
ξ̂1
1,j and rξ̂2

2,j are shown
in the figure 5.

The curvature, sharpness and height profiles of the optimal
paths are shown in figures 6 and 7. The paths are demon-
strated to satisfy the endpoint and continuity constraints (7)-
(10) and are also feasible and valid as they satisfy (11)-(13).

Figure 8 shows another scenario invloving 2 gliders, 3
interest points and a thermal. Here an interest point in glider



0 200 400 600 800
0

100

200

300

400

500

600

700

800

900

Distance X (m)

D
is

ta
n
c
e
 Y

 (
m

)

Fig. 5: Cooperative autonomous soaring for 2 gliders, 4
interest points and 4 thermals.

1’s composite path is moved such that it comes closer to the
composite path of glider 2. The algorithm determines that
the more optimal solution where this interest point is in the
composite path of glider 2.
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Fig. 6: Curvature and sharpness profiles.
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VII. CONCLUSION

In this paper we solve the problem of planning paths for
multiple gliders which have to visit a set interest points.
The gliders can also use thermals to gain height and hence
increase their range. First we introduce a special kind of
curve, called a leg. Our algorithm uses this leg to generate
composite paths for the gliders. The paths planned by the
proposed algorithm are shown to be valid and feasible.
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Fig. 8: How moving an interest point changes the optimal
solution

Moreover they are guaranteed to cover as many interest
points as possible within the particular class of composite
paths introduced in the paper. Furthermore, they also have
the minimum arc-length of any other path with equal number
of visited interest points.

Since, the approach proposed in this paper is exact (mean-
ing it produces the best composite path form a class of
composite paths) it is not particularly time efficient. Future
work should focus on inexact but faster algorithms. More-
over, since the algorithm produces a composite path from a
particular class of composite paths, it is sub-optimal. Hence,
efforts should be made to provide bounds on measuring the
sub-optimality of the algorithm.
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APPENDIX 1
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Fig. 9: Lines drawn at r(0)
and r(lcc) are tangent to the
circle Cml
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Fig. 10: Lines drawn at r(0)
and r(lcc), and extended
backward are tangent to the
circle Cml

Without loss of generality we assume that p0 = [0, 0]T and
θ0 = 0. If this is not true the curve can be obtained by an
appropriate amount of translation and rotation of the curve.
Lets define θe as the angle pgp0 makes with the x-axis. The
expression for θe is,

θe = arctan

(
pgx
pgy

)
, (31)

where pgx and pgy are the x and y coordinates of pg , respec-
tively. First we show that the line passing through r(lcc)
with orientation θ(lcc) is always tangent to a circle Cml with
origin at Ωl. This information is then used to obtain the value
of β and also the total path length lf of the leg.

3) Proving tangency to Cml : As shown in figure 3 lines
passing through r(0) and r(lcc) with orientations θ(0) and
θ(lcc) respectively, make an angle γ with the tangent to the
circle Cfl at their respective points. Imagine a circle with

radius r and center at point O. If a line intersects this circle
at a point, and makes angle γ with the (tangent to the) circle
at that point, then this line is tangent to a smaller circle with
center at O and radius r cos(γ). Using this fact if we draw
lines at points r(0) and r(lcc), with orientations θ(0) and
θ(lcc) respectively. These lines will be tangent to another
circle, called Cml , with center at ΩL and radius

RM = RT cos(γ). (32)

The lines touch CmL at points ra and rb respectively. This
is depicted in figure 9. Since the lines

−−−−→
rbr(lcc) and

−−−−→
r(0)ra

make an angle β with each other, lines
−−−→
raΩL and

−−−→
ΩLr

b,
will also make an angle β with each other. The straight line−−−−→
rbr(lcc), will intersect any given point on the 2-d plane, for
a particular value of β, if its outside of CmL . Notice that only
the part of this line, starting from r(lcc) and going away from
rb, is appended to the CC turn. If assumption 2 is met, pg

will always lie on this part of the line.

4) Calculating arc length of the leg lf and the angle β:
Figure 10 another line segment ΩLpg , which is added to
make calculations easier. The length of the line segment
ΩLp

g is li and the angle it makes with the x-axis is θi.
li can be expressed as,

li =

√
le2 − 2RT le sin(θe + γ) +R2

T . (33)

Hence, from figure 10 we see that ls, which is the length of
the segment rbpg , can be expressed as,

ls =

√
li
2 −R2

M ,

Since, the leg contains the segment r(lcc)pg , the length
of segment rbr(lcc) needs to be subtracted from ls. By
observing figure 9, the length of segment rbr(lcc) is found
to be RT sin(γ). The length of the leg now becomes,

lf = ls −RT sin(γ) + lcc, (34)

where lcc is the length of CC turn, given by the equation 17.
This length lf is the arc length of the leg for a glider flying
from one configuration to a position.
Moving on to calculating β, from figure 10 the following
relation is obtained,

li sin(θi) = le sin(θe)−RM
which leads to the expression for θi,

θi =


arcsin

(
le sin(θe)−RM

li

)
if le cos(θe)−RT sin(γ) ≥ 0

π − arcsin
(
le sin(θe)−RM

li

)
if le cos(θe)−RT sin(γ) < 0 ,

(35)

the piecewise definition of θi is due to the fact that the
function arcsin has a range of [−π, π]. Finally, β can be
expressed as,

β
(
pg, p0, θ0

)
= θi + arcsin

(RM
li

)
(36)


	INTRODUCTION
	Related Work

	Problem Statement
	Single-agent problem
	Visitation order
	Composite path and height profile
	Feasibility and Validity
	Optimization Problem

	Multi-agent problem
	Assumptions

	Planning a leg in the composite path of a glider
	CC turns
	Line segment

	Single-agent problem
	Construction of graph i(bold0mu mumu i)
	Arc length of a node
	Cost of a node
	Validity of a node

	Uniform cost graph search over i
	Arc-length of allocation i

	Multi-agent problem
	Accumulated arc-length
	Cost of an allocation


	Simulation Results
	Conclusion
	References
	Proving tangency to Clm
	Calculating arc length of the leg lf and the angle 



